论文

一次中尺度对流系统层云区域的电场探空观测和电荷结构研究

  • 张鸿波 ,
  • 郄秀书 ,
  • 刘明远 ,
  • 蒋如斌 ,
  • 陆高鹏 ,
  • 陈志雄 ,
  • 孙竹玲 ,
  • 刘瑞婷 ,
  • 李进梁 ,
  • 郑天雪 ,
  • 陈洪滨
展开
  • 中国科学院大气物理研究所中层大气与全球环境探测重点实验室, 北京 100029;中国气象科学研究院灾害天气国家重点实验室, 北京 100081;中国科学院大学, 北京 100049;南京信息工程大学气象灾害预报预警与评估协同创新中心, 江苏 南京 210044;中国科学技术大学地球和空间科学学院, 安徽 合肥 230026;福建师范大学地理科学学院, 福建 福州 350117;北京城市气象研究院, 北京 100089

收稿日期: 2020-12-17

  修回日期: 2021-05-19

  网络出版日期: 2021-12-28

基金资助

国家自然科学基金项目(41630425, 41805004); 国家重点研发计划项目(2017YFC1501502); 中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC007); 北京市自然科学基金项目(8204060); 灾害天气国家重点实验室开放课题(2018LASW-B07)

Study on the Charge Structure in the Stratiform Region of a Mesoscale Convective System based on in-situ Electric Field Observation

  • ZHANG Hongbo ,
  • QIE Xiushu ,
  • LIU Mingyuan ,
  • JIANG Rubin ,
  • LU Gaopeng ,
  • CHEN Zhixiong ,
  • SUN Zhuling ,
  • LIU Ruiting ,
  • LI Jinliang ,
  • ZHENG Tianxue ,
  • CHEN Hongbin
Expand
  • Key Laboratory of Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China;School of earth and space sciences, University of Chinese Academy of Sciences, Beijing 100049, China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China;School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China;Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China

Received date: 2020-12-17

  Revised date: 2021-05-19

  Online published: 2021-12-28

摘要

基于自主获取的双金属球电场探空仪穿云观测数据, 结合地面大气电场、 天气雷达、 闪电定位等综合观测资料, 对华北平原地区一次中尺度对流系统(Mesoscale Convective System, MCS)层云区域内的探空电场和电荷结构进行研究。探空系统上升和下降阶段均处于该MCS层云区域中, 此时雷暴正处于成熟阶段。完整的上升阶段探空数据表明, 该MCS层云区域内存在6个正、 负极性交替的电荷区, 主正电荷区的高度范围为8.2~9.5 km, 对应温度层-20~-14 ℃; 主负电荷区高度范围为7.4~8.2 km(-14~-10 ℃); 紧靠下方为一个薄正电荷区; 最上方为一负极性电荷屏蔽区; 0 ℃层附近有一对正、 负极性电荷区。探空下降阶段(间隔约1 h)获取的层云区域电荷分布与上升阶段大致对应, 但电荷层所处高度以及厚度和电荷密度均有所差异。

本文引用格式

张鸿波 , 郄秀书 , 刘明远 , 蒋如斌 , 陆高鹏 , 陈志雄 , 孙竹玲 , 刘瑞婷 , 李进梁 , 郑天雪 , 陈洪滨 . 一次中尺度对流系统层云区域的电场探空观测和电荷结构研究[J]. 高原气象, 2021 , 40(6) : 1531 -1541 . DOI: 10.7522/j.issn.1000-0534.2021.zk004

Abstract

Based on the in-situ observation of double-metal-sphere three-dimensional (3-D) electric field sonde and the comprehensive data of surface electric field, weather radar and lightning location, the electric field (E-field) and corresponding charge structure inside the stratiform region of a mesoscale convective system (MCS) in the North China Plain on 19 August 2016 were studied.The sounding system was released at 04: 30 (Beijing time) when the storm was at mature stage.The surface E-field was relatively weak (about +1.7 kV·m-1) compared to that of other overhead strong thunderstorms (>5 kV·m-1).The lightning frequency of the whole MCS presented an obvious unimodal distribution and the peak occurred at about 06: 00.However, almost all lightning occurred in the convection region, while there was a few lightning within the stratiform.The complete sounding data during the ascent stage showed that there were six charge layers in the stratiform and the charge polarity altered in the vertical direction.The main positive charge region was at 8.2-9.5 km (-20~-14 ℃) and the main negative charge region was at 7.4~8.2 km (-14~-10 ℃).A thin positive layer was just below, and a negative shielding charge region was near the top of thunderstorm.There were one positive and one negative charge layer near 0 ℃.The total net charge of the six layers was weakly positive (about +0.22 nC·m-2), that may be caused by the positive particles advected from the convection based on the 3-D dynamic field simulation of the MCS.The local electrification mechanism may also contribute to the charge layers near 0 ℃, that need more observation and simulation to study.When the sounding system flew down (about 1 hour later), it still went through the stratiform region that was at the mature stage.The available sounding data between 4.6 to 9.0 km showed the maximum E-field was about +70 kV·m-1, larger than that in the ascent stage, and four charge layers existed.The distribution of charge structure corresponded roughly to with that during the ascent stage, while the heights, thicknesses and charge densities of the charge layers were different.The differences may be caused by the changes of the sounding position relative to the thunderstorm, the development status, and the dynamic and microphysical field inside cloud.

参考文献

[1]CareyL D, MurphyM J, MccormickT L, alet, 2005.Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system [J].Journal of Geophysical Research: Atmospheres, 110(D03105): 1-23.DOI: 10.1029/2003JD004371.
[2]DavisM H, 1964.Two charged spherical conductors in a uniform electric field: forces and field strength [J].The Quarterly Journal of Mechanics and Applied Mathematics, 17(4): 499-511.DOI: 10.1093/qjmam/17.4.499.
[3]DetwilerA G, KennedyP, 2020.In situ observations of microphysics, electric fields, and lightning in the trailing stratiform region of a mesoscale convective system[J].Journal of Geophysical Research: Atmospheres, 125(23): 1-19.DOI: 10.1029/2020JD032865.
[4]LangT J, RutledgeS A, WiensK C, 2004.Origins of positive cloud-to-ground lightning flashes in the stratiform region of a mesoscale convective system [J].Geophysical Research Letters, 31(10): 377-393.DOI: 10.1029/2004GL019823.
[5]LópezJ A, MontanyàJ, VeldeO, alet, 2019.Charge Structure of Two Tropical Thunderstorms in Colombia[J].Journal of Geophysical Research: Atmospheres, 124(10).DOI: 10.1029/2018JD029188.
[6]MaZ L, JiangR B, QieX S, alet, 2021.A low frequency 3D lightning mapping network in north China [J].Atmospheric Research, 249.DOI: 10.1016/j.atmosres.2020.105314.
[7]MacGormanD R, RustW D, ZieglerC L, alet, 2008.TELEX the thunderstorm electrification and lightning experiment [J].Bulletin of the American Meteorological Society, 89(7): 997-1013.DOI: 10.1175/2007BAMS2352.1.
[8]MarshallT C, RustW D, 1993.Two types of vertical electrical structures in stratiform precipitation regions of mesoscale convective systems [J].Bulletin of the American Meteorological Society, 74(11): 2159-2170.DOI: 10.1175/1520-0477(1993)0742.0.CO; 2.
[9]MarshallT C, StolzenburgM, KrehbielP R, alet, 2009.Electrical evolution during the decay stage of New Mexico thunderstorms [J].Journal of Geophysical Research: Atmospheres, 114(D02209): 1-20.DOI: 10.1029/2008JD010637.
[10]MoQ, DetwilerA G, HallettJ, alet, 2003.Horizontal structure of the electric field in the stratiform region of an Oklahoma mesoscale convective system [J].Journal of Geophysical Research: Atmospheres, 108(D7): 1-15.DOI: 10.1029/2001JD001140.
[11]PetersonM, LiuC, 2011.Global statistics of lightning in anvil and stratiform regions over the tropics and subtropics observed by the Tropical Rainfall Measuring Mission [J].Journal of Geophysical Research: Atmospheres, 116(D23201): 1-13.DOI: 10.1029/2011JD015908.
[12]Qie, X S, SoulaS, ChauzyS, 1994.In?uence of ion attachment on the vertical distribution of the electric ?eld and charge density below a thunderstorm [J].Annales Geophysicae, 12(12): 1218-1228.DOI: 10.1007/s00585-994-1218-6.
[13]StolzenburgM, MarshallT C, 1994a.Testing models of thunderstorm charge distributions with Coulomb's law [J].Journal of Geophysical Research: Atmospheres, 99(D12): 25921-25932.DOI: 10.1029/94JD02332.
[14]StolzenburgM, MarshallT C, 2008.Charge structure and dynamics in thunderstorms [J].Space Science Reviews, 137(1-4): 355-372.DOI: 10.1007/978-0-387-87664-1_23.
[15]StolzenburgM, MarshallT C, RustW D, alet, 1994b.Horizontal distribution of electrical and meteorological conditions across the stratiform region of a mesoscale convective system [J].Monthly Weather Review, 122(8): 1777-1797.DOI: 10.1175/1520-0493(1994)122<1777: HDOEAM>2.0.CO; 2.
[16]StolzenburgM, RustW D, MarshallT C, 1998a.Electrical structure in thunderstorm convective regions: 2.isolated storms[J].Journal of Geophysical Research: Atmospheres.103(D12), 14079-14096.DOI: 10.1029/97JD03547.
[17]StolzenburgM, RustW D, MarshallT C, 1998b.Electrical structure in thunderstorm convective regions: 3.Synthesis[J].Journal of Geophysical Research: Atmospheres.103(D12), 14097-14108.DOI: 10.1029/97JD03545.
[18]StolzenburgM, RustW D, SmullB F, alet, 1998c.Electrical structure in thunderstorm convective regions: 1.Mesoscale convective systems [J].Journal of Geophysical Research: Atmospheres, 103(D12): 14059-14078.DOI: 10.1029/97JD03546.
[19]WangF, LiuH Y, DongW S, alet, 2018.Characteristics of lightning flashes associated with the charge layer near the 0℃ isotherm in the stratiform region of mesoscale convective systems [J].Journal of Geophysical Research: Atmospheres, 123: 9524-9541.DOI: 10.1029/2018JD028569.
[20]ZhangH B, LuG P, QieX S, alet, 2016.Locating narrow bipolar events with single-station measurement of low-frequency magnetic fields [J].Journal of Atmospheric and Solar-Terrestrial Physics, 143-144: 88-101.DOI: 10.1016/j.jastp.2016.03.009.
[21]ZhangT L, YuH, ZhouF C, alet, 2018.Measurements of vertical electric field in a thunderstorm in a Chinese inland plateau [J].Annales Geophysicae, 36: 979-986.DOI: 10.5194/angeo-36-979-2018.
[22]ZhangT L, ZhaoZ K, ZhaoY, alet, 2015.Electrical soundings in the decay stage of a thunderstorm in the Pingliang region [J].Atmospheric Research, 2015, 164-165: 188-193.DOI: 10.1016/j.atmosres.2015.05.008.
[23]冯桂力, 郄秀书, 袁铁, 等, 2007.雹暴的闪电活动特征与降水结构研究[J].中国科学(D辑: 地球科学), 37(1): 125-134.DOI: 10.3969/j.issn.1674-7240.2007.01.014.
[24]孔祥贞, 邱振峰, 赵阳, 等, 2021.雷暴活动与MLT区域金属Na层变化特征的统计研究[J].高原气象, 40(1): 219-228.DOI: 10.7522/j.issn.1000-0534.2020.00002
[25]李亚珺, 张广庶, 文军, 等, 2012.沿海地区一次多单体雷暴电荷结构时空演变[J].地球物理学报, 55(10): 3203-3212.DOI: 10.6038/j.issn.0001-5733.2012.10.003.
[26]刘冬霞, 郄秀书, 王志超, 等, 2013.飑线系统中的闪电辐射源分布特征及云内电荷结构讨论[J].物理学报, 62 (21): 219201.DOI: 10.7498/aps.62.219201.
[27]郄秀书, 张其林, 袁铁.2013.雷电物理学[M].北京: 科学出版社.
[28]孙凌, 郄秀书, MansellE R, 等, 2018.雷暴云内电场力对起电和电荷结构的反馈作用[J].物理学报, 067(016): 371-383.DOI: 10.7498/aps.67.20180505.
[29]王梦旖, 谭涌波, 师正, 等, 2019.大气冰核谱对雷暴云微物理过程及起电影响的数值模拟[J].高原气象, 38(3): 593-603.DOI: 10.7522/j.issn.1000-0534.2019.00013.
[30]王志超, 杨静, 陆高鹏, 等, 2015.华北地区一次中尺度对流系统上方的Sprite放电现象及其对应的雷达回波和闪电特征[J].大气科学, 39(4): 839-848.DOI: 10.3878/j.issn.1006-9895. 1412.14232.
[31]武智君, 郄秀书, 王东方, 2016.基于多站电场变化同步测量的负地闪回击中和电荷源特征[J].高原气象, 35(4): 1123-1134.DOI: 10.7522/j.issn.1000-0534.2015.00070.
[32]杨静, 何其佳, 钟丽华, 2018.雷暴云顶和低电离层之间的大气放电现象研究进展[J].气象与环境科学, 41(4): 117-127.DOI: 10.16765/j.cnki.1673-7148.2018.04.017.
[33]张鸿波, 郄秀书, 刘明远, 等, 2021.基于双金属球三维电场探空仪的一次雷暴云内电荷结构观测研究[J].地球物理学报, 64(4): 1155-1166.DOI: 10.6038/cjg2021O0187.
[34]张雅乐, 俞小鼎, 2021.黄河气旋暴雨过程发展演变成因分析[J].高原气象, 40(1): 74-84.DOI: 10.7522/j.issn.1000-0534. 2019.00103.
[35]赵中阔, 郄秀书, 张广庶, 等, 2008.雷暴云内电场探测仪及初步实验结果[J].高原气象, 27(4): 881-887.
[36]赵中阔, 郄秀书, 张廷龙, 等, 2009.一次单体雷暴云的穿云电场探测及云内电荷结构[J].科学通报, 54(22): 3532-3536.DOI: 10.1360/csb2009-54-22-3532.
[37]郑栋, 张义军, 孟青, 等, 2010.一次雹暴的闪电特征和电荷结构演变研究[J].气象学报, 68(2): 248-263.DOI: 10.11676/qxxb2010.025.
文章导航

/