论文

民勤地区紫外辐射的观测与模拟研究

  • 闭建荣 ,
  • 黄建平 ,
  • 高中明 ,
  • 史晋森 ,
  • 马越界 ,
  • 张武
展开
  • 兰州大学 大气科学学院/半干旱气候变化教育部重点实验室, 兰州 730000;2. 鄂尔多斯市气象局, 鄂尔多斯 017000

收稿日期: 2012-06-14

  网络出版日期: 2014-04-28

基金资助

国家重大研究计划项目(2012CB955302);国家自然科学基金项目(41305025);中央高校基本科研业务费专项(lzujbky-2013-207,lzujbky-2013-ct05);半干旱气候变化教育部重点实验室(兰州大学)开放课题基金

Observation and Simulation Study of Solar Ultraviolet Radiation Characteristics in Minqin Region

  • BI Jianrong ,
  • HUANG Jianping ,
  • GAO Zhongming ,
  • SHI Jinsen ,
  • MA Yuejie ,
  • ZHANG Wu
Expand
  • Key Laboratory for Semi-Arid Climate Change of the Ministry of Education and College of Atmospheric Sciences of Lanzhou University, Lanzhou 730000, China;2. Ordos City Bureau of Meteorology, Ordos 017000, China

Received date: 2012-06-14

  Online published: 2014-04-28

摘要

利用2010年春季民勤加强观测实验的地面辐射资料,分析了民勤沙漠干旱区总紫外辐射的变化特征,并对该地区的紫外辐射进行了估算和模拟。结果表明,紫外辐射和太阳总辐射表现出一致的变化特征,层云对两者的反射能力比卷云强。2010年6月紫外辐射的瞬时最大值为55.92 W·m-2,平均日总量为1.07 MJ·m-2,紫外辐射与太阳辐射比例的平均值为4.7%,其变化范围在3%~9%之间。根据晴空指数(Kt)与最大紫外辐射(UV0)及太阳总辐射(G)建立了民勤地区紫外辐射(UV)的估算方程:UV=2.94+1.22×(KUV0)和UV=0.047G,均能较好地估计该地区的地表紫外辐射。由于受输入参数精度的限制,辐射传输模式SBDART低估了晴空条件下的紫外辐射,低估的总平均值为1.12 W·m-2 (约5.6%),变化范围在-2.8~0.2 W·m-2之间。

本文引用格式

闭建荣 , 黄建平 , 高中明 , 史晋森 , 马越界 , 张武 . 民勤地区紫外辐射的观测与模拟研究[J]. 高原气象, 2014 , 33(2) : 413 -422 . DOI: 10.7522/j.issn.1000-0534.2013.00012

Abstract

The variation characteristics of surface total ultraviolet radiation (UV) over desert and arid region in Minqin was analyzed by using the land-surface radiation datum observed at Minqin during the intensive observational experiment in spring of 2010. The results show that: The ultraviolet radiation and global radiation exhibit consistent variation features, and the opaque cloud have much stronger reflected intensity of global and ultraviolet radiations than thin cloud. For the whole period of measurement, the instantaneous maximum of UV is 55.92 W·m-2, and the overall daily average is 1.07 MJ·m-2. The mean ratio of UV to global irradiance is 4.7%, ranging from 3% to 9%. Based on the relationship of clearness index (Kt) and maximum UV (UV0) and global radiation (G) measurements, we develop two empirical formulae are UV=2.94+1.22 (KUV0) and UV=0.047G, respectively, which can be estimated surface ultraviolet radiation under all-weather condition. Due to influence by the accuracy of input parameters for model, SBDART radiative transfer model generally underestimates the UV radiation under clear-sky condition, which can be about 1.12 W·m-2 (~5.6%), varying within -2.8 to 0.2 W·m-2.

参考文献

[1]Farman J C, Gardiner B G, Shanklin J D. Large losses of total ozone in Antarctica reveal seasonal ClOX Nox interaction[J]. Nature, 1985, 315: 207-210.
[2]Frederick J E. Ultraviolet sunlight reaching the earth’s surface: a review of recent research[J]. Photochem Photobiol, 1993, 57: 175-1178.
[3]周秀骥, 罗超, 李维亮, 等. 中国地区臭氧总量变化与青藏高原低值中心[J]. 科学通报. 1995, 40(15): 1396-1398.
[4]吴兑, 邓雪娇. 环境气象学与特种气象预报[M]. 北京:气象出版社, 2001.
[5]王明星. 大气化学[M]. 北京: 气象出版社, 1991: 296-301.
[6]吕达仁, 李卫, 李福田, 等. 长春地区紫外光谱(UVA, UVB)辐射观测和初步分析[J]. 大气科学, 1996, 20(3): 343-351.
[7]王普才, 吴北婴, 章文星. 影响地面紫外辐射的因素分析[J]. 大气科学, 1999, 23(1): 37-44.
[8]白建辉, 王庚辰, 胡非. 太阳紫外辐射在大气中衰减的探讨[J]. 气候与环境研究, 2002, 7 (4): 440-446.
[9]Gardiner B G, Webb A R, Bais A F, et al. European intercomparison of ultraviolet spectroradiometers[J]. Environment Techrology, 1993, 14(1): 25-43.
[10]季国良, 陈有虞. 青藏高原的紫外辐射[J]. 高原气象, 1985, 4(增刊): 112-121.
[11]白建辉, 王庚辰. 北京地区太阳紫外辐射的观测与分析研究[J]. 大气科学, 1994, 18(3): 341-347.
[12]江灏, 季国良, 吕兰芝. HEIFE绿洲区的太阳紫外辐射[J]. 高原气象, 1994, 13(3): 346-352.
[13]张兴华, 胡波, 王跃思, 等. 拉萨紫外辐射特征分析及估算公式的建立[J]. 大气科学, 2012, 36(4): 744-754.
[14]江灏, 季国良. 五道梁地区的太阳紫外辐射[J]. 高原气象, 1996, 15(2): 141-146.
[15]江灏, 季国良, 师生波, 等. 藏北高原紫外辐射的变化特征[J]. 太阳能学报, 1998, 19(1): 7-12.
[16]白建辉, 王庚辰. 北京地区太阳紫外辐射的长期变化趋势及分析[J]. 太阳能学报, 2000, 21(2): 192-197.
[17]白建辉, 王庚辰. 北京地区太阳紫外辐射的基本特征[J]. 太阳能学报, 1993, 14(3): 245-250.
[18]白建辉, 王庚辰. 大气中的水汽对太阳紫外辐射消光的可能机制分析研究[J]. 大气科学, 1995, 19(3): 380-384.
[19]胡波. 中国紫外与光合有效辐射的联网观测及其时空分布特征研究[D]. 北京: 中国科学院大气物理研究所, 2005: 33-38.
[20]Hu B, Wang Y S, Liu G R. Ultraviolet radiation spatial-temporal characteristics derived from the ground-based measurements taken in China[J]. Atmos Environ, 2007, 41(27): 5707-5718.
[21]吉廷艳, 王红丽, 胡跃文, 等. 贵阳地区太阳紫外辐射变化特征及主要影响因子分析[J]. 高原气象, 2011, 30(4): 1005-1010.
[22]王普才, 吴北婴, 章文星. 紫外辐射传输模式计算与实际测量的比较[J]. 大气科学, 1999, 23(3): 359-364.
[23]Wang Pucai, Lenoble J. Comparison between measurements and modeling of UV—B irradiance for clear sky: A case study[J]. Appl Opt, 1994, 33, 3964-3971.
[24]胡波, 王跃思, 刘广仁. 北京城市紫外辐射变化特征及经验估算方程[J]. 高原气象, 2007, 26(3): 511-518.
[25]白建辉, 王庚辰. 广州地区太阳紫外总辐射的统计计算方法[J]. 太阳能学报, 1998, 19(1): 54-59.
[26]Bi J, Huang J, Fu Q, et al. Field measurement of clear-sky solar irradiance in Badain Jaran Desert of Northwestern China[J]. J Quan Spectro Rad Transfer, 2012, doi:10.1016/j.jqsrt.2012.07.025.
[27]McCartney E J. Optics of the Atmosphere[M]. New York: John Wiley, 1976: 408.
[28]张丁玲, 黄建平, 刘玉芝, 等. 利用CERES(SYN)资料分析青藏高原云辐射强迫的时空变化[J]. 高原气象, 2012, 31(5): 1192-1202.
[29]Halthore R N, Schwartz S E, Michalsky J J, et al. Comparison of model estimated and measured direct-normal solar irradiance[J]. J Geophys Res, 102(D25), 1997, doi: 10.1029/97JD02628.
[30]Kasten F, Andrew T Y. Revised optical air mass tables and approximation formula[J]. Appl Opt, 1989, 28(22), 4735-4738.
[31]赵庆云, 张武, 吕萍, 等. 河西走廊“2010.04.24”特强沙尘暴特征分析[J]. 高原气象, 2012, 31(3): 688-696.
[32]阴俊, 谈建国. 上海地区地面太阳紫外辐射的观测和分析[J]. 热带气象学报, 2006, 22(1): 86-90.
[33]Foyo-Moreno I, Vida J, Alados-Arboledas L. A simple all weather model to estimate Ultraviolet solar radiation (290~385 nm)[J]. J Appl Meteor, 1999, 38: 1020-1026.
[34]Ricchiazzi P, Yang S, Gautier C, et al. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere[J]. Bull Amer Meteor Soc, 79, 2101-2114, 1998, doi: 10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2.
[35]Halthore R N, David Crisp, Schwartz S E, et al. Intercomparison of shortwave radiative transfer codes and measurements[J]. J Geophys Res, 110, D11206, 2005, doi: 10.1029/2004JD005293.
文章导航

/