论文

日本高分辨率模式对中国降水预报能力的客观检验

  • 潘留杰 ,
  • 张宏芳 ,
  • 王建鹏 ,
  • 宁志谦
展开
  • 陕西省气象台, 西安 710014;2. 陕西省气象服务中心, 西安 710014;3. 陕西省气象局, 西安 710014

收稿日期: 2012-10-24

  网络出版日期: 2014-04-28

基金资助

中国气象局预报员专项(CMAYBY2014070);陕西省气象局数值模式应用团队;陕西省气象局预报员专项(2012Y6)

An Objective Verification of Forecasting Ability of Japan High-Resolution Model Precipitation in China

  • PAN Liujie ,
  • ZHANG Hongfang ,
  • WANG Jianpeng ,
  • NING Zhiqian
Expand
  • Shaanxi Meteorological Observatory,Xi'an 710014, China;2. Shaanxi Meteorological Service Centre, Xi'an 710014, China;3. Shaanxi Meteorological Bureau,Xi'an 710014, China

Received date: 2012-10-24

  Online published: 2014-04-28

摘要

利用2012年4月1日8月31日中国2419个台站逐6 h降水资料、CMORPH(NOAA Climate Prediction Center Morphing Method)卫星与中国3万余个自动站逐时降水融合资料,基于客观统计方法,分别检验了日本高分辨率模式对中国逐6 h、12 h和24 h分段站点、格点降水的预报能力。结果表明:(1)模式晴雨预报技巧随分段间隔的增加整体增加,暴雨预报技巧在12 h分段表现相对较好;(2)就站点检验来说,模式晴雨预报的降水频数高于观测,6 h和12 h分段暴雨预报低于观测频数,24 h分段则与观测基本一致,通过计算调整阈值可以明显改善技巧评分;(3)6 h分段降水标准差比值<1,出现预报为中雨,而观测为暴雨或小雨的概率增大,24 h分段则相反;(4)整体而言,模式对东南地区的预报技巧高于西北地区,但沿海地区降水的偶然性更大;(5)模式预报与高分辨率卫星、自动站融合降水产品有更好的一致性,阈值调整的空间相对有限;(6)东南地区预报与观测的相关性大于西北地区,模式对东部沿海地区降水量级的预报比西部地区更为合理。

本文引用格式

潘留杰 , 张宏芳 , 王建鹏 , 宁志谦 . 日本高分辨率模式对中国降水预报能力的客观检验[J]. 高原气象, 2014 , 33(2) : 483 -494 . DOI: 10.7522/j.issn.1000-0534.2012.00188

Abstract

Based on objective statistics, using precipitation data collected every 6 h at 2419 stations from 1 April to 31 August 2012, and hourly rainfall data fusion by CMORPH(NOAA Climate Prediction Center Morphing Method)satellites and more than 30 thousand automatic stations, Japan high resolution mode precipitation forecasting abilities in China by every 6 h, 12 h and 24 h segment was tested. The results show that: (1) Rain or shine forecast skill scores gradually increases with segment intervals increasing, torrential rain forecast skill scores have better performance at 12 h segment than others. (2) On station verification, the precipitation frequency of model rain or shine forecasts is higher than observed frequency, while the 6 h, 12 h segment torrential rain forecast is lower than observed frequency. But for 24 h segment, the torrential rain forecast frequency basically agrees with the observed one. By changing threshold values, forecast skill scores can be improved. (3) 6 h fractional precipitation standard deviation rations are <1, so the more probability of moderate rains are forecasted but heavy or light rains appears, but for 24 h, the case is on the contrary. (4) Generally speaking, forecast skill scores are higher in the southeast areas than in the north west areas, but it may rains unexpectedly in coastal areas. (5) Model prediction consists with high resolution satellite and automatic station fusion precipitation products better and the threshold adjustment is limited. (6) The relevance between forecasting and observing is higher in the southeast area than in the northwest area. The model can forecast precipitation more reasonably in coastal areas than the west area.

参考文献

[1]张寅, 罗亚丽, 管兆勇. NCEP全球预报系统在ARM SGP站点预报大气温度、湿度和云量的检验[J]. 大气科学, 2012, 36(1): 170-184.
[2]陈海山, 孙照渤. 陆面模式CLSM 的设计及性能检验II:模式检验[J]. 大气科学, 2005, 29(2): 272-282.
[3]刘鹏, 钱永甫. pσ九层C型跳点网格区域气候模式及其模拟性能检验[J]. 高原气象, 2008, 27(2):231-238.
[4]黄泓, 张铭. η坐标暴雨模式的改进及效果检验[J]. 高原气象, 2006, 25(1):29-33.
[5]Murphy A H, Winkler R L. A general framework for forecast verification [J]. Mon Wea Rev, 1986,115: 1330-1338.
[6]潘留杰, 张宏芳, 朱伟军, 等. ECMWF模式对东北半球气象要素场预报能力的检验[J]. 气候与环境研究, 2013, 28(1): 48-59.
[7]Wedam G B, Mcmurdie L A, Mass C F. Comparison of model forecast skill of sea level pressure along the east and west coasts of the United States[J]. J Atmos Sci, 2009, 24(5): 843-854.
[8]Chakraborty A. The skill of ECMWF medium-range forecasts during the year of tropical Convection 2008[J]. Mon Wea Rev, 2008, 138: 3787-3805.
[9]Davis C, Brown B, Bullock R. Object-based verification of precipitation forecasts. Part I: methodology and application to mesoscale rain areas[J]. Mon Wea Rev, 2006,134: 1772-1784.
[10]Davis C, Brown B, Bullock R. Object-based verification of precipitation forecasts. Part II: application to convective rain systems[J]. Mon Wea Rev, 2006, 134: 1785-1795.
[11]Skok G, Tribba J, Rakovec. Object-Based analysis and verification of WRF model precipitation in the low- and mid-latitude Pacific Ocean[J]. Mon Wea Rev, 2010, 138: 4561-4575.
[12]Nachamkin J, Chen S, Schmidt J. Evaluation of heavy precipitation forecasts using composite-based methods: A distributions-oriented Approach[J]. Mon Wea Rev, 2005, 133: 2163-2177.
[13]Gilleland E, Ahijevych D, Brown B G. Intercomparison of spatial forecast verification methods[J]. Wea Forecasting, 2009, 24: 1416-1430.
[14]王叶红, 赵玉春, 李红莉, 等. AREM模式的热启动数值模拟——以2007年7月13日暴雨过程为例[J]. 高原气象, 2011, 30(6): 1488-1504.
[15]郝民, 徐枝芳, 陶士伟, 等. GRAPES RUC系统模拟研究及应用试验[J]. 高原气象, 2011, 30(6): 1573-1583.
[16]何由, 阳坤, 姚檀栋, 等. 基于WRF模式对青藏高原一次强降水的模拟[J]. 高原气象, 2012, 31(5): 1183-1191.
[17]石彦军, 任余龙, 王式功, 等. BCC_CSM气候模式对中国区域气候变化模拟能力的检验[J]. 高原气象, 2012, 31(5): 1257-1267.
[18]公颖, 王叶红, 赖安伟. 三个模式对2008年夏半年西南区降水预报效果的检验[J]. 高原气象, 2010, 29(6): 1441-1451.
[19]彭新东, 常燕, 王式功. GRAPES模式对2008年两次强降水过程的数值预报检验[J]. 高原气象, 2010, 29(2): 321-330.
[20]王颖, 张镭, 胡菊, 等. WRF模式对山谷城市边界层模拟能力的检验及地面气象特征分析[J]. 高原气象, 2010, 29(6): 1397-1407.
[21]Casati1 B, Ross G, Stephenson D B. A new intensity-scale approach for the verification of spatial precipitation forecasts[J]. Meteor Appl, 2004, 11: 141-154.
[22]Marsigli C, Montani A, Paccangnella T. A spatial verification method applied to the evaluation of high-resolution ensemble forecasts[J]. Meteor Appl, 2008, 15: 125-143, doi: 10.1002/met.65.
[23]Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. J Geophys Res, 2001,106(D7): 7183-7192.
文章导航

/