利用O3数据、气溶胶指数和风场观测资料,对发生在中国黑龙江大兴安岭和印度尼西亚地区的特大火灾进行了分析。结果表明:(1)在火灾发生后,研究区及下风方区域O3总量均有增加;(2)此次黑龙江火灾释放出的CO、NOX、CH4等大气成分是造成5月O3总量增加的主要原因;(3)进一步分析黑龙江火灾发生时期的环流形势发现,火灾发生前,3、4月O3总量的增加来源于西风气流对中高纬高浓度O3的平流输送,而5月则与火灾有较为密切的关系;(4)新加坡和菲律宾地区O3含量增加似乎也与O3前体物有关。
Based on the forest fires data, total O3 amount, aerosol index and flow field data, the effect of the biggest fire process happened in Heilongjiang Province in China and Indonesia on the atmospheric ozone was analyzed. The results show that: (1) The total ozone amount in the studying region and the leeward side area had increased in the period of fire disaster; (2) The extremely serious forest fire happened in Heilongjiang had released a large amount of atmospheric species gases, such as CO, NOX and CH4, which have some contribution to the O3 increase; (3) Further analysis the circulation feature revealed that, the increased ozone in March and April can be due to the ozone advective transportation by westerly wind, which can transfer the air containing high concentration ozone in high latitude to the studying region. While in May, the forest fire process played an important role in the O3 enhancement; (4) The increase of total ozone in Singapore and Philippines also seems to be related to the ozone precursor released from the forest fire.
[1]Lacis A A. Radiative forcing of climate by changes in the vertical distribution of ozone[J]. J Geophys Res, 1990, 95: 9971-9981.
[2]Fishman J, Ramanathan V, Ceutzen P J. Tropospheric ozone and climate[J]. Nature, 1979, 282: 818-820.
[3]Harmmeed S, Cess R D, Hogan J S. Response of the global climate changes in atmospheric chemical composition due to fossil fuel burning[J]. J Geophys Res, 1980, 85: 7537-7545.
[4]石柳, 郑明华, 付遵涛. 北极臭氧损耗对初春东亚中高纬地区地面气温影响的观测分析[J]. 高原气象, 2011, 30(6): 1566-1572.
[5]陈闯, 田文寿, 田红瑛, 等. 青藏高原东北侧臭氧垂直分布与平流层—对流层物质交换[J]. 高原气象, 2012, 31(2): 295-303.
[6]Kita K, Fujiwara M, Kawakami S. Total ozone increase associated with forest fires over the Indonesian region and its relation to the El Nino-Southern oscillation[J]. Atmos Environ, 2000, 34: 2681-2690.
[7]Goode J G, Yokelson R J, Ward D E, et al. Measurements of excess O<sub>3</sub>, CO<sub>2</sub>, CO, CH<sub>4</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>2</sub>H<sub>2</sub>, HCN, NO, NH<sub>3</sub>, HCOOH, CH<sub>3</sub>COOH, HCHO, and CH<sub>3</sub>OH in 1997 Alaskan biomass burning plumes by Airborne Fourier Transform Infrared Spectroscopy (AFTIR)[J]. J Geophys Res, 2000, 105: 2147-2166.
[8]Colarco P R, Schoeberl M R, Doddridge B G, et al. Transport of smoke from Canadian forest fires to the surface near Washington, D.C.: Injection height, entrainment, and optical properties[J]. J Geophys Res, 2004, 109(D6), doi:10.1029/2003JD004248.
[9]陈科艺, 彭志强. 应用OMI卫星资料监测蘑菇戈壁沙尘的传播[J]. 高原气象, 2012, 31(3): 798-803.
[10]Fromm M, Alfred J, Hoppel K, et al. Observations of boreal forest fire smoke in the stratosphere by POAM III, SAGE II, and lidar in 1998[J]. Geophys Res Lett, 2000, 27: 1407-1410.
[11]Damoah R, Spichtinger N, Forster C, et al. Around the world in 17 days-hemispheric-scale transport of forest fire smoke from Russia in May 2003[J]. Atmos Chem Phys, 2004, 4: 1311-1321.