论文

1977-2010年长江源区夏季大气0℃层高度变化

  • 王立伟 ,
  • 张明军 ,
  • 高峰
展开
  • 中国科学院兰州文献情报中心, 兰州 730000;2. 西北师范大学地理与环境科学学院, 兰州 730070

收稿日期: 2014-01-15

  网络出版日期: 2014-06-28

基金资助

中国科学院“十二五”委托任务“资源环境科技发展态势监测分析与战略研究”

Variation of 0℃ Atmospheric Height in the Headwaters of Changjiang River in Summer during 1977-2010

  • WANG Liwei ,
  • ZHANG Mingjun ,
  • GAO Feng
Expand
  • Lanzhou literature and information Center of Chinese Academy of Sciences, Lanzhou 730000, China;2. College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China

Received date: 2014-01-15

  Online published: 2014-06-28

摘要

利用1977-2010年青藏高原中部沱沱河气象站的高空气象探测资料,分析了长江源区夏季大气0℃层高度的变化趋势及其与地面气温的关系。结果表明,1977-2010年长江源区夏季大气0℃层高度平均值为5536 m,6月大气0℃层高度略低于7、 8月,6月地面气温也明显低于7、 8月;08:00(北京时,下同)、 20:00和全天大气0℃层高度的变化倾向率分别为16.5,4.2和11.4 m·(10a)-1,温度较低的08:00呈现更为明显的升高趋势,地面气温也表现出类似的升温特征;地面气温与大气0℃层高度存在正相关关系,夏季平均气温与大气0℃层高度的相关系数为0.782,通过了0.01的显著性水平检验。

本文引用格式

王立伟 , 张明军 , 高峰 . 1977-2010年长江源区夏季大气0℃层高度变化[J]. 高原气象, 2014 , 33(3) : 769 -774 . DOI: 10.7522/j.issn.1000-0534.2014.00048

Abstract

According to sounding data measured at Tuotuohe station in the central Tibetan Plateau during 1977-2010, the trend of 0°C atmospheric height in the headwaters of Changjiang River was analyzed as well as the relationship with surface air temperature in summer. The study results show that the mean height during 1977-2010 is 5536 m in the study region, the mean height in June is slightly lower than that in July and August, and the mean surface air temperature in June is also smaller than that in July and August. The trend magnitudes of 08:00(Beijing time, hereafter the same), 20:00 and their average are 16.5 m per decade, 4.2 m per decade and 11.4 m per decade, respectively, indicating that the colder time has experienced a more warming trend and the surface air temperature also shows similar monthly distribution. In July, the height shows an increasing trend by 35.6 m per decade, and the trend magnitudes of heights in June and August are 0.3 m per decade and 2.5 m per decade, respectively. Surface air temperature correlates with the height positively, and the correlation coefficient between the surface air temperature and height is 0.782, which has passed the statistically significant level at 0.01.

参考文献

[1]陈进. 长江源区水循环机理探讨[J]. 长江科学院院报, 2013, 30(4): 1-5.
[2]易湘生, 尹衍雨, 李国胜, 等. 青海三江源地区近50年来的气温变化[J]. 地理学报, 2011, 66(11): 1451-1465.
[3]王可丽, 程国栋, 丁永建, 等. 黄河、 长江源区降水变化的水汽输送和环流特征[J]. 冰川冻土, 2006, 28(1): 8-14.
[4]陈芳, 马英芳, 申红艳, 等. 长江源区近44年气候变化的若干统计分析[J]. 气象科技, 2007, 35(3): 340-344.
[5]曹建廷, 秦大河, 罗勇, 等. 长江源区1956-2000年径流量变化分析[J]. 水科学进展, 2007, 18(1): 29-33.
[6]李林, 戴升, 申红艳, 等. 长江源区地表水资源对气候变化的响应及趋势预测[J]. 地理学报, 2012, 67(7): 941-950.
[7]时兴合, 秦宁生, 许维俊, 等. 1956-2004年长江源区河川径流量的变化特征[J]. 山地学报, 2007, 25(5): 513-523.
[8]潘竟虎. 近15年来长江源区土地利用变化及其生态环境效应[J]. 长江流域资源与环境, 2005, 14(3): 310-315.
[9]陈克龙, 李双成, 李迪强, 等. 长江源区和黄河源区生态系统功能变化的对比研究[J]. 生态经济, 2008(11): 32-35.
[10]张少波, 陈玉春, 吕世华, 等. 青藏高原植被变化对中国东部夏季降水影响的模拟研究[J]. 高原气象, 2013, 32(5): 1236-1245, doi: 10.7522/j.issn.1000-0534.2012.00119.
[11]Zhang Y, Guo Y. Variability of atmospheric freezing-level height and its impact on the cryosphere in China[J]. Annals of Glaciology, 2011, 52(58): 81-88.
[12]Wang S, Zhang M, Pepin N C, et al. Recent changes in freezing level heights in High Asia and their impact on glacier changes[J]. J Geophys Res: Atmospheres, 2014, 119(4): 1753-1765, doi: 10.1002/2013JD020490.
[13]Zhang G, Sun S, Ma Y, et al. The response of annual runoff to the height change of the summer time 0℃ level over Xinjiang[J]. J Geographic Sci, 2010, 20(6): 833-847.
[14]宫恒瑞, 石玉, 冯志敏. 春季融雪期0℃层高度与乌鲁木齐河径流量的关系[J]. 干旱区研究, 2010, 27(1): 69-74.
[15]Huang X, Wang S, Wang J, et al. Spatio-temporal changes in free-air freezing level heights in Northwest China, 1960-2012[J]. Quaternary International, 2013, 313-314: 130-136.
[16]黄小燕, 张明军, 王圣杰, 等. 中国西北地区近50年夏季0℃层高度及气温时空变化特征[J]. 地理学报, 2011, 66(9): 1191-1199.
[17]孙桂丽, 陈亚宁, 李卫红, 等. 新疆叶尔羌河冰川湖突发洪水对气候变化的响应[J]. 冰川冻土, 2010, 32(3): 580-586.
[18]马雪宁, 张明军, 王圣杰, 等. 黄河流域夏季0℃层高度变化及与地面气温和降水量的关系[J]. 资源科学, 2011, 33(12): 2302-2307.
[19]尤伟, 臧增亮, 潘晓滨, 等. 夏季青藏高原雷暴天气及其天气学特征的统计分析[J]. 高原气象, 2012, 31(6): 1523-1529.
[20]青海省气象局. 青海省基层气象台站简史[M]. 北京: 气象出版社, 2013.
[21]Sen P K. Estimates of the regression coefficient based on Kendall's tau[J]. Journal of the American Statistical Association, 1968, 63(324): 1379-1389
[22]Tabari H, Talaee P H. Temporal variability of precipitation over Iran: 1966-2005[J]. J Hydrol, 2011, 396(3): 313-320.
[23]祁威, 张镱锂, 高俊刚, 等. 1971-2009年珠穆朗玛峰地区尼泊尔境内气候变化[J]. 地理学报, 2013, 68(1): 82-94.
[24]Wang S, Zhang M, Sun M, et al. Changes in precipitation extremes in alpine areas of the Chinese Tianshan Mountains, central Asia, 1961-2011[J]. Quaternary International, 2013, 311: 97-107.
[25]杜予罡, 唐国利, 王元. 近100年中国地表平均气温变化的误差分析[J]. 高原气象, 2012, 31(2): 456-462.
[26]You Q, Kang S, Aguilar E, et al. Changes in daily climate extremes in China and its connection to the large scale atmospheric circulation during 1961-2003[J]. Climate Dyn, 2011, 36: 2399-2417.
[27]王永波, 张治, 周秀杰. 哈尔滨气温的长期变化及基本态特征[J]. 高原气象, 2012, 31(2): 492-497.
[28]李庆祥, 黄嘉佑. 北京极端低温事件的长期变化特征[J]. 高原气象, 2012, 31(4): 1145-1150.
[29]陈艳, 段旭, 董文杰, 等. 昆明地区城市热岛效应的再分析[J]. 高原气象, 2012, 31(6): 1753-1760.
[30]陈忠升, 陈亚宁, 李卫红. 中国西北干旱区夏季径流量对大气0℃层高度变化的响应[J]. 中国科学: 地球科学, 2012, 42(11): 1767-1777.
文章导航

/