论文

“0702”山西大暴雨过程的多尺度特征

  • 苗爱梅 ,
  • 郝振荣 ,
  • 贾利冬 ,
  • 李苗
展开
  • 山西省气象台, 太原 030006;2. 山西省气象信息中心, 太原 030006;3. 山西省气象局, 太原 030002;4. 山西省气象服务中心, 太原 030002

收稿日期: 2012-06-27

  网络出版日期: 2014-06-28

基金资助

山西省科技攻关项目(20090311083);公益性行业(气象)科研专项(GYHY200906011);中国气象局关键技术集成与应用项目(CMAGJ2012M09);中国气象局预报员专项(CMAYBY2012-007)

The Multi-Scale Features of “0702” Heavy Rainstorm Process

  • MIAO Aimei ,
  • HAO Zhenrong ,
  • JIA Lidong ,
  • LI Miao
Expand
  • Shanxi Meteorological Observatory, Taiyuan 030006, China;2. Shanxi Meteorological Information Center, Taiyuan 030006, China;3. Shanxi Meteorological Service, Taiyuan 030002, China;4. Shanxi Meteorological Service Center, Taiyuan 030002, China

Received date: 2012-06-27

  Online published: 2014-06-28

摘要

利用T639L19 1°×1°分析场、 FY-2红外云图及红外辐射亮温TBB、 多普勒雷达和气柱水汽总量等资料,对2011年7月2-3日发生在山西境内的区域性暴雨进行了多尺度特征分析。结果表明:(1)副热带高压北上,西南暖湿气流加强,东北冷涡后部冷空气南下,山西北中部锋生是这次区域性暴雨发生的大尺度环流特征。(2)山西中部暴雨由2个β中尺度对流云团生成,且在边界层2条中尺度切变线附近触发对流发展,形成2个暴雨中心;山西南部暴雨则由8个中尺度对流云团生成、 发展合并,在边界层α中尺度人字形切变线附近触发对流发展,α中尺度人字形切变线云系上4个γ中尺度气旋是导致局地大暴雨和特大暴雨形成的直接原因;≤-53℃的黑体亮温区超前多普勒雷达人字形切变线云系反射率因子≥35 dBz的区域。(3)降水中前期,对流云团合并,导致地闪频次峰值和降水量峰值出现,且地闪频次峰值出现时间较降水量峰值出现时间提前12~18 min。(4)中部暴雨发生在气柱水汽总量水平梯度大值区与边界层切变线相重叠的区域,南部暴雨则发生在气柱水汽总量水平梯度大值区的南部0.5~1.0个经/纬距的高湿区与边界层人字形切变线相重叠的区域;气柱水汽总量水平梯度大值区形成时间和边界层切变线形成时间均比暴雨发生提起12 h以上。

本文引用格式

苗爱梅 , 郝振荣 , 贾利冬 , 李苗 . “0702”山西大暴雨过程的多尺度特征[J]. 高原气象, 2014 , 33(3) : 786 -800 . DOI: 10.7522/j.issn.1000-0534.2013.00014

Abstract

With data of T639L19 1°×1° analysis field, FY-2 infrared cloud and infrared radiation brightness temperature(TBB), doppler radar, air vapor content, and so on, the multi-scale feature of the regional rainstorm occurred in Shanxi territory from 2 to 3 July 2011 was analysed. The results show that: (1) The subtropical high moves up northward, the southwest warm-wet air flow enhances, the cold air behind the northeast cold vortex moves down southward, the frontogenesis in the mid-north part of Shanxi are large-scale circulation features of the regional rainstorm. (2) The rainstorm in the middle of Shanxi was created by two β mesoscale convective cloud cluster, and triggered the convection developing nearby the two mesoscale shear line on the boundary layer, and formed two rainstorm centers; While, the rainstorm in the south of Shanxi was created by eight mesoscale convective cloud clusters, developed and combined, and triggered the convection developing nearby the α mesoscale herringbone shear line on the boundary layer. The four γ mesoscale cyclone on the α mesoscale herringbone shear cloud system were the direct reason of the occurrence of the local heavy rainstorm and super rainstorm; The black body brightness temperature area ≤-53℃ advanced the area where the doppler radar herringbone shear cloud system reflectivity gene ≥35 dBz. (3) During the early-middle period of precipitation, the convective cloud cluster combined led to the appearance of cloud-to-ground lightning frequency peak value and precipitation peak value. And the cloud-to-ground lightning frequency peak value appeared 12~18 minutes earlier than the precipitation peak value. (4) The rainstorm of middle part occurred in the area of air vapor content spatial distribution map, where the horizontal grads big value area overlapped with the boundary layer shear line. While, the rainstorm of south part occurred in the area of air vapor content spatial distribution map, where the high humidity area was at a distance of 0.5~1.0 latitude and longitude from south of the horizontal grads big value area, overlapped with the boundary layer herringbone shear; Both the forming time of the air vapor content spatial distribution map horizontal grads big value area and the forming time of the boundary layer shear line were 12 h earlier than the arising of rainstorm.

参考文献

[1]Ninomiya K T, Akiyama, Ikawa M.Evolution and fine structure of long-lived meso-ascale convective system in Baiu front zone. Part: Evolution and meso-β(Part meso-<em>γ</em>)characteristics[J]. J Meteor Soc Japan, 1988, 66(6): 331-371.
[2]周海光, 王玉斌. 2003年6月30日梅雨锋大暴雨中β和中β结构的双多普勒雷达反演[J]. 气象学报, 2005, 63(3): 301-312.
[3]徐珺, 毕宝贵, 谌芸. 济南7.18大暴雨中尺度分析研究[J]. 高原气象, 2010, 29(5): 1218-1229.
[4]苗爱梅, 武捷, 赵海英, 等. 低空急流与山西大暴雨的统计关系及流型配置[J]. 高原气象, 2010, 29(4): 939-946.
[5]王丽荣, 刘黎平, 王立荣, 等. 一次局地短时大暴雨中-<em>γ</em>尺度分析[J]. 高原气象, 2011, 30(1): 217-225.
[6]苗爱梅, 董春卿, 张红雨, 等. "0811"大暴雨过程中MCC与一般暴雨云团的对比分析[J]. 高原气象, 2012, 31(3): 731-743.
[7]井喜, 李社宏, 屠妮妮, 等. 黄河中下游一次MCC和中-β尺度强对流云团相互作用暴雨过程综合分析[J]. 高原气象, 2011, 30(4): 913-928.
[8]李青春, 苗世光, 郑祚芳, 等. 北京局地暴雨过程中近地层辐合线的形成与作用[J]. 高原气象, 2011, 30(5): 1232-1242.
[9]苗爱梅, 贾利冬, 郭媛媛, 等. 060814山西省局地大暴雨的地闪特征分析[J]. 高原气象, 2008, 27(4): 873-880.
[10]吴海英, 曾明剑, 尹东屏, 等. 一次苏皖特大暴雨过程中边界层急流结构演变特征和作用分析[J]. 高原气象, 2010, 29(6): 1431-1440.
[11]葛晶晶, 陆汉城, 张群, 等. 强烈发展的中尺度涡旋影响下持续性暴雨的位涡诊断[J]. 高原气象, 2012, 31(4): 952-962.
[12]陈涛, 张芳华, 宗志平. 一次南方春季强对流过程中影响对流发展的环境场特征分析[J]. 高原气象, 2012, 31(4): 1019-1031.
[13]杨连梅, 张云慧, 汤浩. 2007年7月新疆三次暴雨过程的水汽特征分析[J]. 高原气象, 2012, 31(4): 963-973.
[14]徐小红, 余兴, 朱延年, 等. 一次强飑线云结构特征的卫星反演分析[J]. 高原气象, 2012, 31(1): 258-268.
[15]慕建利, 李泽椿, 赵琳娜, 等. "07.08"陕西关中短历时强暴雨水汽条件分析[J]. 高原气象, 2012, 31(4): 1042-1052.
[16]Orlanski L A. A rational subdivision of scales for atmospheric processes[J]. Bull Amer Meteor Soc, 1975, 56: 527-530.
[17]苗爱梅, 郝振荣, 贾利冬, 等. 精细化监测资料在山西暴雨预报模型改进中的应用[J]. 气象, 2012, 38(7): 786-794.
[18]苗爱梅, 贾利冬, 李苗, 等. 2009年山西5次横切变暴雨的对比分析[J]. 气象, 2011, 37(8): 956-967.
[19]俞小鼎, 姚秀萍, 熊廷南, 等. 多普勒天气雷达原理与业务应用[M]. 北京: 气象出版社, 2006: 60.
文章导航

/