论文

青藏高原沙尘示踪物从对流层向平流层传输的数值模拟

  • 杨琴 ,
  • 田文寿 ,
  • 隆霄 ,
  • 陈磊 ,
  • 张杰 ,
  • 黄倩 ,
  • 田红瑛
展开
  • 兰州大学 大气科学学院/半干旱气候变化教育部重点实验室, 兰州 730000;2. 北京师范大学 全球变化与地球系统科学研究院, 北京 100875

收稿日期: 2013-01-28

  网络出版日期: 2014-08-28

基金资助

国家自然科学基金项目(41175042,41225018);科技部973课题项目(2010CB428604)

Transport of Dust Aerosols from Troposphere to Stratosphere over Qinghai-Xizang Plateau

  • YANG Qin ,
  • TIAN Wenshou ,
  • LONG Xiao ,
  • CHEN Lei ,
  • ZHANG Jie ,
  • HUANG Qian ,
  • TIAN Hongying
Expand
  • Key Laboratory of Semi-Arid Climate Chang, Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China;2. National Academy of Global Change and Earth System Scicence, Beijing Normal University, Beijing 100875, China

Received date: 2013-01-28

  Online published: 2014-08-28

摘要

利用NCEP再分析资料和卫星观测资料,结合耦合了沙尘模块的中尺度模式WRF,通过个例分析研究了青藏高原及附近地区沙尘气溶胶从近地面向对流层上部和平流层下部传输的特征和机制以及青藏高原大地形对平流层与对流层之间物质交换的影响。结果表明,深对流活动可将近地面沙尘气溶胶传输到上对流层-下平流层区域,但是下平流层区域的沙尘气溶胶浓度分布依赖于地面沙尘源的位置和对流的强度,且与对流系统内是否有降水有关。在没有穿透性对流情况下,垂直上升运动不能直接将沙尘输送到下平流层,但上对流层的沙尘可通过扩散作用和小尺度的混合过程经过数小时缓慢地进入下平流层。在没有明显系统性降水的情况下,夏季青藏高原上空旺盛的对流活动和高地形使得高原上空成为气溶胶进入下平流层的主要区域。上对流层区域的沙尘气溶胶浓度还受到平流层空气入侵的影响,在没有强的地面沙尘排放源的情况下,平流层空气的入侵对上对流层区域气溶胶浓度的分布和演变有较大的影响。

本文引用格式

杨琴 , 田文寿 , 隆霄 , 陈磊 , 张杰 , 黄倩 , 田红瑛 . 青藏高原沙尘示踪物从对流层向平流层传输的数值模拟[J]. 高原气象, 2014 , 33(4) : 887 -899 . DOI: 10.7522/j.issn.1000-0534.2013.00095

Abstract

Using the mesoscale model WRF coupled with a dust module together with the NCEP reanalysis data and satellite observations, the characteristics of the vertical transport of dust aerosols from the near surface to the upper troposphere and the lower stratosphere are investigated through a case study and the effect of the Qinghai-Xizang Plateau on the stratosphere and troposphere mass exchanges is also discussed. The analysis reveals that deep convection can inject dust aerosols into the stratosphere. However, the aerosol concentrations in the lower stratosphere are largely affected by locations of dust sources and convection intensity as well as the precipitation. When there is no overshooting convection, vertical motions can not transport aerosols directly into the lower stratosphere. However, small scale diffusion and mixing processes can slowly transport aerosols in the upper troposphere into the lower stratosphere using a few hours of time. Under conditions of no system precipitation, the strong convective activities in summer over the Qinghai-Xizang Plateau make it a favorable location for aerosols in the troposphere entering into the lower stratosphere. The stratospheric air intrusion has a large impact on time variation and spatial distribution of aerosol concentration in the upper troposphere when there are no strong dust emissions near the surface.

参考文献

[1]周秀骥, 罗超, 李维亮, 等. 中国地区臭氧总量变化与青藏高原低值中心[J]. 科学通报, 1995, 40(15): 1396-1398.
[2]Ye Z, Xu Y. Climate characteristics of ozone over Tibetan Plateau[J]. J Geophys Res, 2003, 108(D20): 46-54.
[3]Gettelman A, Kinnison D E, Dunkerton T J, et al. Impact of monsoon circulations on the upper troposphere and lower stratosphere[J]. J Geophys Res, 2004, 109, D22101, doi: 10. 1029/2004JD004878.
[4]Randel W, Park M. Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS)[J]. J Geophys Res, 2006, 111, D12314, doi: 10.1029/2005JD006490.
[5]Liu C, Liu Y, Cai Z, et al. A Madden Julian oscillation-triggered record ozone minimum over the Tibetan Plateau in December 2003 and its association with stratospheric low-ozone' pockets[J]. Geophys Res Lett, 2009, 36, L15830, doi:10.1029/2009GL039025.
[6]Fu R, Hu Y, Wright J S, et al. Short circuit of water vapor and polluted air to the global stratosphere by convection transport over the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 5664-5669.
[7]Tian W, Chipperfield M, Huang Q. Effects of the Tibetan Plateau on total column ozone distribution[J]. Tellus, 2008, 60B: 622-635.
[8]Liu Y, Wang Y, Liu X, et al. Tibetan middle tropospheric ozone minimum in June discovered from GOME observations[J]. Geophys Res Lett, 2009, 36, L05814, doi: 10.1029/2008GL037056.
[9]Zheng X, Zhou X, Tang J, et al. A meteorological analysis on a low tropospheric ozone event over Xining North Western China on 26-27 July 1996[J]. Atmos Environ, 2004, 38: 261-271.
[10]陈闯, 田文寿, 田红瑛, 等. 青藏高原东北侧臭氧垂直分布与平流层—对流层物质交换[J]. 高原气象, 2012, 31(2):295-303.
[11]陈斌, 徐祥德, 卞建春, 等. 夏季亚洲季风区对流层向平流层输送的源区、路劲及其时间尺度的模拟研究[J].大气科学, 2010, 34(3):495-505.
[12]Andrews D G, Holton J R, Leovy C B. Middle Atmosphere Dynamics[M]. SanDiego: Academic Press, 1987: 489.
[13]Vaughan G, Price J D, Howells J. Transport into the troposphere in a tropopause fold[J]. Quart J Roy Meteor Soc, 1994, 120: 1085-1103.
[14]Cox B D, Bithell M, Gray L J. A general circulation model study of a tropopause-folding event at middle latitudes[J]. Quart J Roy Meteor Soc, 1995, 121: 883-910.
[15]Reed R J. A study of a characteristic type of upper-level frontogenesis[J]. J Meteor, 1955, 12: 226-237.
[16]Appenzeller C, Davies H C. Structure of stratospheric intrusions into the troposphere[J]. Nature, 1992, 358: 570-572.
[17]Kentarchos A S, Davies T D, Zerefos C S. A low latitude stratospheric intrusion associated with a cut-off low[J]. Geophys Res Lett, 1998, 25: 67-70.
[18]Chen B, Liu X. Seasonal migration of cirrus clouds over the Asian monsoon regions and the Tibetan Plateau measured from MODIS/Terra[J]. Geophys Res Lett, 2005, 32, L01804, doi:10.1029/2004GL020868.
[19]Randel W J, Park M, Emmons L, et al. Asian monsoon transport of pollution to the stratosphere[J]. Science, 2010, 328, doi: 10.1126/science.1182274.
[20]王敏仲, 魏文寿, 何清, 等. 青藏高原北侧民丰站2011年7月对流层和低平流层大气观测研究[J]. 高原气象, 2012, 31(5):1203-1214.
[21]周顺武, 杨双艳, 张人禾, 等. 近30年青藏高原臭氧总量亏损的可能原因及其与对流层顶高度的联系[J]. 高原气象, 2012, 31(6): 1471-1478.
[22]周长艳, 李跃清, 李微, 等. 青藏高原东部及邻近地区水汽输送的气候特征[J]. 高原气象, 2005, 24(6):880-888.
[23]Gong S L, Barrie L A, Blanchet J P. Canadian Aerosol Module: A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 1. Module development[J]. J Geophys Res, 2003, 108, D14007, doi:10.1029/2001JD002002.
[24]李耀辉, 赵建华, 薛纪善, 等. 基于GRAPES的西北地区沙尘暴数值预报模式及其应用研究[J]. 地球科学进展, 2005, 9(20): 1001-1011.
[25]Kessler E. On the distribution and continuity of water substance in atmospheric circulation[J]. Meteor Monogr, Amer Meteor Soc, 1969, 10(32):88.
[26]Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave[J]. J Geophys Res, 1997, 102(D14): 16663-16682.
[27]Dudia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J Atmos Sci, 1997, 46: 3077-3107.
[28]Noh Y, Cheon W G, Hong S Y, et al. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data[J]. Bound-Layer Meteor, 2003, 107: 401-427.
[29]Kain J S, Fritsch J M. A one-dimensional entraining/detraining plume model and its application in convective parameterization[J]. J Atmos Sci, 1990, 47: 2784-2802.
[30]WMO. Meteorology-A three-dimensional science: Second season of the commission for aerology[J]. WMO Bull, 1957, 4: 134-138.
文章导航

/