论文

云南极端干旱和多雨年5月异常环流的合成特征

  • 郑建萌 ,
  • 张万诚 ,
  • 马涛 ,
  • 周建琴
展开
  • 云南省气候中心, 昆明 650034;2. 中国气象局兰州干旱气象研究所, 兰州 730020;3. 云南省气象科学研究所, 昆明 650034

收稿日期: 2012-07-13

  网络出版日期: 2014-08-28

基金资助

国家自然科学基金重点项目(U1133603);干旱气象科学研究基金(IAM201202);国家自然科学基金项目(40965006)

Composite Characteristics of the Abnormal Circulation in May between Extreme Drought Years and Rainy Years of Yunnan

  • ZHENG Jianmeng ,
  • ZHANG Wancheng ,
  • MA Tao ,
  • ZHOU Jianqin
Expand
  • Yunnan Climate Center, Kunming 650034, China;2. Institute of Arid Meteorology, China Meteorological Administration, Lanzhou 730020, China;3. Meteorological Sciences Institute of Yunnan Province, Kunming 650034, China

Received date: 2012-07-13

  Online published: 2014-08-28

摘要

应用1961-2010年NCEP/NCAR全球逐月再分析资料,对云南4次极端干旱年(下称干旱年)5月大气环流与4次5月降水偏多年(多雨年)大气环流进行合成对比分析,结果表明,两者从高纬到低纬都存在显著差异。干旱年500 hPa欧亚中高纬为两槽一脊,对应距平场呈“-+-”分布,西风带季节性北移晩;海平面气压场上亚洲为大范围负距平,影响云南的冷空气偏弱。而多雨年则相反,欧亚中高纬为两脊一槽,对应距平场呈“+-+”分布,西风带季节性北移早,乌拉尔山至里海的低槽引导冷空气入侵中国,海平面气压场上高原东部为正距平中心,影响云南的冷空气偏强。干旱年低纬地区环流差异表现为低层西太平洋副热带高压(下称西太副高)偏强、偏西,赤道西风向东、向北推进受阻,孟加拉湾、中南半岛的夏季风偏弱,爆发偏晚;而多雨年的环流形势则相反,西太副高偏弱、偏东,索马里越赤道气流和赤道西风偏强,孟加拉湾、中南半岛的夏季风偏强,爆发偏早;高层南亚高压反气旋环流多雨年比干旱年西伸更明显,范围更大、更强。与多雨年云南上空为异常上升运动不同,干旱年北半球低纬为大范围深厚的异常下沉运动,云南仍为Hadley经圈环流的下沉支控制。对水汽分析表明,多雨年西太副高偏东,云南以西南季风水汽输送为主,水汽通量辐合较常年偏强,水汽含量比多年平均增加,干湿季转换早;而干旱年西太副高偏西、偏南,云南以西风带水汽输送为主,对应异常的水汽通量辐散,水汽含量较常年减少,干湿季转换迟。亚洲夏季风强度指数WYI与5月降水有显著的正相关,并与5月极端降水有较好的对应关系。

本文引用格式

郑建萌 , 张万诚 , 马涛 , 周建琴 . 云南极端干旱和多雨年5月异常环流的合成特征[J]. 高原气象, 2014 , 33(4) : 916 -924 . DOI: 10.7522/j.issn.1000-0534.2013.00029

Abstract

Using the NCEP/NCAR reanalysis data from 1961 to 2010, the discrepancies of atmospheric circulation between the extreme-drought years and above-normal rainfall years in May of Yunnan are analyzed. The results show that the characteristics of atmospheric circulation in May of above-normal rainfall years are different from those of extreme-drought years in both low and high latitude. The extreme-drought-year circulation shows two-trough-one-ridge pattern in mid-high latitude on 500 hPa, with the corresponding anomaly field of geopotential height presenting ‘-+-’ pattern and the westerlies moving northward are later than normal years; rather straight flows cover mid-low latitude and large-scale negative anomalies of sea-level pressure cover Asia; cold air activities that might influent Yunnan are weak. On the contrary, it exhibits two-ridge-one-trough pattern in above-normal rainfall years, with the ‘-+-’ pattern of the anomaly field over the mid- and high-latitude and the westerlies moving northern are earlier. The trough over the Ural maintain and Caspian Sea tends to lead cold air intruding China, positive anomaly center of sea-level pressure locating at the eastern part of the Qinghai-Xizang Plateau, which makes cold air activities strong. At the low latitude, the west Pacific Subtropical High (WPSH) is strong and shifts westward, so that the northward and eastward advancement of the tropical westerlies is inhibited and the onset of summer monsoon over the Bay of Bengal and Indo-China peninsula is late and weak, vice versa. The south Asian High in above-normal years is strong and big and locates westward compared to that in extreme-drought years. There is anomaly large-scale and deep subsidence flow at low-latitude in the northern hemisphere(including Yunnan) in extreme-drought years, which is contrary to that in above-normal years. In above-normal rainfall years, the southwest water vapor transport is dominant over Yunnan province and the water vapor converge is comparatively strong than normal, with moisture content above normal and and the shift between dry season and wet season is early, the WPSH shifting eastwards. In extreme-drought years, the WPSH locates westward and southward, the west water vapor transport and water vapor divergence covers Yunnan, with moisture content below normal, and the shift between dry season and wet season is later. The correlation coefficient of Asian summer monsoon index WYI and the precipitation in May is significant positive, especially it is related to the extreme rainfall events.

参考文献

[1]IPCC. Climate Change 2007:The Physical Science Basis, Summary for Policymaker[R]. Geneva: IPCC, 2007
[2]黄荣辉, 徐予红, 周连童. 我国夏季降水的年代际变化及华北干旱化趋势[J]. 高原气象, 1999, 18(4):465-476.
[3]琚建华, 吕俊梅, 任菊章. 北极涛动年代际变化对华北地区干旱化的影响[J]. 高原气象, 2006, 25(1): 74-81.
[4]宋正山, 杨辉, 张庆云. 华北地区水资源各分量的时空变化特征[J]. 高原气象, 1999, 18(4):552-556.
[5]俞亚勋, 王式功, 钱正安, 等. 夏半年西太副高位置与东亚季风雨带(区)的气候联系[J]. 高原气象, 2013, 32(5):1510-1525, doi: 10.7522/j.issn.1000-0534.2013.00033.
[6]王劲松, 陈发虎, 靳立亚近, 等. 近100年来中东亚干旱区气候异常与海平面气压异常的关系[J]. 高原气象, 2008, 27(1): 84-95.
[7]李耀辉, 李栋梁, 赵庆云. 中国西北地区秋季降水异常特征分析[J]. 高原气象, 2001, 20(2): 158-164.
[8]张存杰, 谢金南, 李栋梁. 东亚季风对西北地区干旱气候的影响[J]. 高原气象, 2002, 21(2): 193-198.
[9]张强, 赵映东, 张存杰, 等. 西北干旱区水循环与水资源问题[J]. 干旱气象, 2008, 26(2):55-62.
[10]符睿, 韦志刚, 文军, 等. 西北干旱区地温差季节和年际变化特征的分析[J]. 高原气象, 2008, 27(4):844-851。
[11]李永华, 徐海明, 刘德. 2006年夏季西南地区东部特大干旱及其大气环流异常[J]. 气象学报, 2009, 67(1):122-132.
[12]李跃清. 青藏高原地面加热及上空环流场与东侧旱涝预测的关系[J]. 大气科学, 2003, 27(1):107-114.
[13]刘晓冉, 程炳岩, 杨茜, 等. 川渝地区夏季高温干旱变化特征及其异常年环流形势分析[J]. 高原气象, 2009, 28(2):306-313.
[14]周长艳, 李跃清, 卜庆雷, 等. 盛夏川渝盆地东西部旱涝并存的特征及其大气环流背景[J]. 高原气象, 2011, 30(3):620-627.
[15]齐冬梅, 李跃清, 陈永仁, 等. 近50年四川地区旱涝时空变化特征研究[J]. 高原气象, 2011, 30(5):1170-1179.
[16]刘瑜, 赵尔旭, 彭贵芬, 等. 2005年春末初夏云南异常干旱与中高纬度环流[J]. 干旱气象, 2007, 25(1):32-37.
[17]晏红明, 段旭, 程建刚. 2005年春季云南异常干旱的成因分析[J]. 热带气象学报, 2007, 23(3): 300-304.
[18]张琼, 吴国雄. 长江流域大范围旱涝与南亚高压的关系[J]. 气象学报, 200l, 59(5):569-577.
[19]丁一汇, 张锦, 宋亚芳. 天气和气候极端事件的变化及其与全球变暖的联系[J]. 气象, 2002, 28(3):3-7.
[20]马拄国, 符淙斌. 1951-2004年我国北方干旱化的基本事实[J]. 科学通报, 2006, 5l(20):2429-2439.
[21]张鹏飞, 李国平, 尹建昌. 青藏高原西部地表热通量输送的低频特征[J]. 高原气象, 2009, 28(3):556-563.
[22]李汀, 琚建华. 亚洲夏季风季节内振荡对云南主汛期降水的影响Ⅰ:云南主汛期季节内振荡特征及其传播过程[J]. 高原气象, 2013, 32(3): 617-625, doi: 10.7522/j.issn.1000-0534.2012.00060.
[23]李汀, 琚建华. 亚洲夏季风季节内振荡对云南主汛期降水的影响Ⅱ:云南主汛期季节内振荡活动过程及其对MJO活动的响应[J]. 高原气象, 2013, 32(3): 626-634, doi: 10.7522/j.issn.1000-0534.2012.00061.
[24]李国平, 罗喜平, 陈婷, 等. 高原低涡中涡旋波动特征的初步分析[J]. 高原气象, 2011, 30(3):553-558.
[25]宋艳, 张菁, 李智才, 等. 青藏高原冬季积雪年代际变化及对中国夏季降水的影响[J]. 高原气象, 2011, 30(4): 843-851.
[26]Lu JunMei, Ju JianHuan, Ren JuZhang, et al. The influence of the madden-julian oscillation activity anomalies on Yunnan’s extreme drought of 2009-2010[J]. Science China, 2012, 55: 98-112.
[27]宋洁, 杨辉, 李崇银. 2009/2010年冬季云南严重干旱原因的进一步分析[J]. 大气科学, 2011, 35(6): 1009-1019.
[28]琚建华, 吕俊梅, 谢国清, 等. MJO和AO持续异常对云南干旱的影响研究[J]. 干旱气象, 2011, 29(4):402-406.
[29]张新主,章新平,谢自楚. 云南2009年秋季特大旱灾大气环流特征分析[J]. 自然灾害学报, 2010, 19(6): 138-146.
[30]张万诚, 万云霞, 任菊章, 等. 水汽输送异常对2009年秋、冬季云南降水的影响研究[J]. 高原气象, 2011, 30(6): 1534-1540.
[31]陈艳, 丁一汇, 肖子牛, 等. 水汽输送对云南夏季风爆发及初夏降水异常的影响[J]. 大气科学, 2006, 30(1): 25-37.
[32]周建琴, 晏红明, 郑建萌, 等. 2010年9-10月云南连阴雨发生的事实和成因分析[J]. 高原气象, 2014, 33(1): 106-115, doi: 10.7522/j.issn.1000-0534.2012.00169.
[33]郑建萌, 朱红梅, 曹杰. 云南5月雨量与全球海温的关系分析研究[J]. 云南大学学报, 2007, 29(2): 160-166.
[34]张万诚, 郑建萌, 任菊章. 云南极端气候干旱的特征分析[J]. 灾害学, 2013, 28(1):59-64.
[35]郑建萌, 张万诚, 万云霞, 等. 云南极端干旱年春季异常环流形势的对比分析[J]. 高原气象, 2013, 32(6): 1665-1672, doi: 10.7522/j.issn.1000-0534.2012.00143.
[36]Webster P J, Yang S. Monsoon and ENSO: Selectively interactive system[J]. Quart J Roy Soc, 1992, 118: 877-926.
[37]吴国雄, 张永生. 青藏高原的热力和机械强迫作用以及亚洲季风的爆发I: 爆发地点[J]. 大气科学, 1998, 22(6): 825-838.
[38]秦剑, 琚建华, 解明恩. 低纬高原天气气候[M]. 北京:气象出版社, 1997: 123-131.
[39]何金海, 丁一汇, 高辉, 等. 南海夏季风建立日期的确定及季风指数[M]. 北京:气象出版社, 2001: 1-6.
文章导航

/