论文

WRF模式对夏季黑河流域气温和降水的模拟及检验

  • 许建伟 ,
  • 高艳红
展开
  • 中国科学院寒区旱区环境与工程研究所 陆面过程与气候变化重点实验室, 兰州 730000;2. 中国科学院大学, 北京 100049

收稿日期: 2012-12-06

  网络出版日期: 2014-08-28

基金资助

国家自然科学基金项目(41322033);中国科学院百人计划项目(2010CB950503);国家重点基础研究发展计划(2013CB956004)

Validation of Summer Surface Air Temperature and Precipitation Simulation over Heihe River Basin

  • XU Jianwei ,
  • GAO Yanhong
Expand
  • Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2012-12-06

  Online published: 2014-08-28

摘要

利用NCEP/DOE再分析资料驱动中尺度区域模式WRF对1999-2008年夏季(6-8月)黑河流域及周边地区气温和降水进行了模拟,并检验了区域气候模式在山区复杂地形条件下的模拟性能,客观评估了复杂地形条件下气候模拟的性能。气温和降水空间分布的对比分析表明,高分辨率WRF模式较粗分辨率的再分析资料能更精细地模拟出复杂地形条件下山区气温和降水的分布特征,充分体现了高海拔山区复杂地形对气温和降水空间分布的影响。通过BSS指标对气温、降水模拟的定量评估表明,在复杂地形条件下,WRF模式可以在几乎所有观测站点提高气温模拟的准确性,也可以为复杂山区没有观测站点地区气温的空间分布和量值提供数据支持。对降水量模拟的准确性低于气温模拟,半数的站点模拟值较再分析资料更接近观测值,位于祁连山东南侧站点降水量模拟值偏大,可能与WRF模式中地形对水汽输送的抬升作用有关,也可能与观测站点对该区域的代表性有关。

本文引用格式

许建伟 , 高艳红 . WRF模式对夏季黑河流域气温和降水的模拟及检验[J]. 高原气象, 2014 , 33(4) : 937 -946 . DOI: 10.7522/j.issn.1000-0534.2013.00149

Abstract

The 10-year simulation (1999-2008) from June to August is conducted using the regional climate model WRFV3.0 driven by the NCEP/DOE reanalysis data. The model results are validated over the Heihe River Baisn and its surroundings. The assessment of advantages and disadvantages are objectively given for reginal climate simulation in the surface air temperature and precipitation over the complex terrain. The results show that, compared to the coarser resolution reanalysis data, the high resolution regional climate simulation more precisely presents the distribution characteristics of the surface air temperature and precipitation in complex terrain area, which shows a dominant impact of complex topography on the spatial distribution of the surface air temperature and precipitation. Quantitative assessments by BSS indicator show an obvious improvement of the surface air temperature simulation at almost all of observation stations, which provides data support for the spatial distribution and quantity of the surface air temperature for complex mountain area with no observations. The improvements in the precipitation simulation is not as high as the surface air temperature, only at half of all stations are closer to the observation than the reanalysis. An overestimation in the precipitation exists in the southestern Qilian Mountain. It might be related to too strong orographic lifting on windward slope in the high resolution or the representation of observation location in a regional grid cell.

参考文献

[1]Pielke R A S. Mesoscale Meteorological Modeling[M]. 2\+nd ed. San Diego: Academic Press, 2002.
[2]IPCC. Climate Change 2007: The Physical Science Basis[DB/OL]. Intergovernmental Panel on Climate Change, http://www.ipcc.ch/, 2007.
[3]Gao Y H, Vano J A, Zhu C M, et al. Evaluating climate change over the Colorado River basin using regional climate models[J]. J Geophys Res-Atmos, 2011, 116(D13): 1-20.
[4]Feser F, Rockel B, Von Storch H, et al. Regional climate models add value to global model data: A review and selected examples[J]. Bull Amer Meteor Soc, 2011, 92(9):1181-1192.
[5]王世玉, 张耀存. 不同区域气候模式对中国东部区域气候模拟的比较[J]. 高原气象, 1999, 18(1): 29-39.
[6]Giorgi F, Bates G T. The climatological skill of a regional model over complex terrain[J]. Mon Wea Rev, 1989, 117(11): 2325-2347.
[7]高学杰, 徐影, 赵宗慈, 等. 数值模式不同分辨率和地形对东亚降水模拟影响的试验[J]. 大气科学, 2006, 30(2): 185-192.
[8]Gao Y H, Xue Y K, Peng W, et al. Assessment of dynamic downscaling of the extreme rainfall over East Asia using a regional climate model[J]. Adv Atmos Sci, 2011, 28(5): 1077-1098.
[9]Gao Y H, Chen F, Barlage M, et al. Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River Basin, northwest China[J]. J Geophys Res, 2008, 113(D20S90):1-19.
[10]高学杰, 李栋梁, 赵宗慈, 等. 温室效应对我国青藏高原及青藏铁路沿线气候影响的数值模拟[J]. 高原气象, 2003, 22(5): 458-463.
[11]张冬峰, 高学杰, 白虎志, 等. RegCM3模式对青藏高原地区气候的模拟[J]. 高原气象, 2005, 24(5): 714-720.
[12]张冬峰, 高学杰, 赵宗慈, 等. RegCM3区域气候模式对中国气候的模拟[J]. 气候变化研究进展, 2005, 1(3): 119-121.
[13]董广涛, 陈伯民, 陈葆德. 区域气候模式RegCM3在华东地区夏季的10年回报和2010年业务预报[J]. 高原气象, 2012, 31(6): 1601-1610.
[14]陈隆亨, 曲耀光. 河西地区水土资源及其合理开发利用[M]. 北京: 科学出版社, 1992.
[15]康尔泗, 程国栋, 蓝永超, 等. 西北干旱区内陆河流域出山径流变化趋势对气候变化响应模型[J]. 中国科学: 地球科学, 1999, 29(增刊1): 47-54.
[16]Cardoso R M, Soares P M M, Miranda P M A, et al. WRF high resolution simulation of Iberian mean and extreme precipitation climate[J]. Inter J Climatol, 2013, 33(11), 2591-2608.
[17]Gula J, Peltier W R. Dynamical downscaling over the Great Lakes Basin of North America using the WRF regional climate model: The impact of the great lakes system on regional greenhouse warming[J]. J Climate, 2012, 25(21):7723-7742.
[18]Yuan X, Liang X Z, Wood E F. WRF ensemble downscaling seasonal forecasts of China winter precipitation during 1982-2008[J]. Climate Dynamics, 2012, 39(7-8):2041-2058.
[19]彭雯, 高艳红. 青藏高原融冻过程中能量和水分循环的模拟研究[J]. 冰川冻土, 2011, 33(2): 364-373.
[20]Salathé E P, Leung L R, Qian Y, et al. Regional climate model projections for the State of Washington[J]. Climatic Change, 2010, 102(1-2): 51-75.
[21]Trier S, Davis C, Ahijevych D, et al. Mechanisms supporting long-lived episodes of propagating nocturnal convection with in a 7-day WRF model simulation[J]. J Atmos Sci, 2006, 63(10): 2437-2461.
[22]王澄海, 孙超. 一个基于WRF+CLM区域气候模式(WRFC)的建立及初步试验[J]. 高原气象, 2013, 32(6): 1626-1637, doi: 10.7522/j.issn.1000-0534.2013.00021.
[23]辛渝, 王澄海, 沈元芳, 等. WRF模式对新疆中部地面总辐射预报性能的检验[J]. 高原气象, 2013, 32(5): 1368-1381, doi: 10.7522/j.issn.1000-0534.2012.00128.
[24]王腾蛟, 张镭, 胡向军, 等. WRF模式对黄土高原丘陵地形条件下夏季边界层结构的数值模拟[J]. 高原气象, 2013, 32(5): 1261-1271, doi: 10.7522/j.issn.1000-0534.2012.00121.
[25]Kanamitsu M, Ebisuzaki W, Woollen J, et al. NCEP-DOE AMIP-II reanalysis(R-2)[J]. Bull Amer Meteor Soc, 2002, 83(11): 1630-1645.
[26]Brier G W. Verification of forecasts expressed in terms of probability[J]. Mon Wea Rev, 1950, 78(1): 1-3.
[27]Wilks D S, Haman K. Statistical methods in the atmospheric sciences[M]. 2\+nd ed. Burlington: Academic Press, 2011.
[28]Von Storch H, Zwiers F W. Statistical analysis in climate research[M]. New York: Cambridge University Press, 2002.
[29]汤懋苍. 祁连山区降水的地理分布特征[J]. 地理学报, 1985, 40(4): 323-332.
[30]张强, 俞亚勋, 张杰. 祁连山与河西内陆河流域绿洲的大气水循环特征研究[J]. 冰川冻土, 2008, 30(6): 907-913.
[31]冯锦明, 符淙斌. 不同区域气候模式对中国地区温度和降水的长期模拟比较[J]. 大气科学, 2007, 31(5): 805-814.
[32]王可丽, 程国栋, 江灏, 等. 祁连山—黑河流域水循环中的大气过程[J]. 水科学进展, 2003, 14(1): 91-97.
[33]陈仁升, 康尔泗, 杨建平, 等. 内陆河流域分布式日出山径流模型——以黑河干流山区流域为例[J]. 地球科学进展, 2003, 18(2): 198-206.
[34]Li Xin, Cheng Guodong, Ling L. Spatial analysis of air temperature in the Qinghai-Tibet Plateau[J]. Arctic, Antarctic, and Alpine Research, 2005, 37(2): 246-252.
[35]舒守娟, 王元, 李艳. 西藏高原地形扰动对其降水分布影响的研究[J]. 水科学进展, 2006, 17(5): 585-591.
文章导航

/