Using observational data of atmospheric turbulence by three eddy covariance systems (EC) which were installed on the upper and lower levels in urban canopy layer at Yuzhong town in Lanzhou city, the turbulent fluxes of difference land surfaces and the turbulent kinetic energy characteristics of different wind direction were analyzed. After that, the spectra of velocity of the minimum turbulent kinetic energy in minimum turbulent kinetic energy at range of wind directions and the maximum turbulent kinetic energy in maximum turbulent kinetic energy at range of wind directions were studied on the upper and lower levels in urban canopy layer. Finally, the applicability of local similarity theory on the upper and lower levels in urban canopy layer was tested. The results show that: (1) Observational sensible heat flux and friction velocity on urban underlying surface which is constituted by cement, masonry on the upper level in urban canopy layer and urban lawn underlying surface on the lower level in urban canopy layer are relatively close, the differences of observational latent heat flux and CO2 flux are significant in the daytime. (2) Generally speaking, turbulent kinetic energy on the upper level in urban canopy layer is greater than the lower level in urban canopy layer. On the upper level in urban canopy layer, turbulent kinetic energy is greater with a more open upwind, but turbulent kinetic energy is greater with a street mouth on the lower level in urban canopy layer. (3) The eddy scale on the upper level in urban canopy layer is greater than the lower level in urban canopy layer. Spectra of velocity for small scale eddies in the inertial subrange fundamentally accord the -2/3 power relationship, and they are approximate isotropic. However, spectra of velocity for large scale eddies do not accord the -2/3 power relationship, and they are anisotropy. (4) For unstable stratification, the dimensionless variance of velocity change with stability on the upper and lower levels in urban canopy layer approximate accord the 1/3 power relationship of local similarity, while stable stratification are not. The dimensionless variance of temperature, humidity and CO2 concentration on the upper and lower levels in urban canopy layer do not accord the -1/3 power relationship of local similarity under whatsoever stratification. (5) Nearly neutral stratification, the dimensionless variance of velocity on the upper and lower levels in urban canopy layer at u, v, w direction are 3.52, 3.03, 1.49 and 2.62, 2.22, 1.50.
[1]刘熙明, 胡非, 李磊, 等. 北京市夏季城市气候趋势和环境效应的分析研究[J]. 地球物理学报, 2006, 49(3): 689-697.
[2]Chan C K, Yao X H. Air pollution in mega cities in China[J]. Atmos Environ, 2008, 42: 1-42.
[3]杜川利, 余兴. 气溶胶和城市热岛效应对秦岭地区近5 0年气温序列影响分析[J]. 高原气象, 2013, 32(5): 1321-1328, doi: 10.7522/j.issn.1000-0534.2012.00124.
[4]郑祚芳, 高华, 王在文, 等. 北京地区降水空间分布及城市效应分析[J]. 高原气象, 2014, 33(2): 522-529, doi: 10.7522/j.issn.1000-0534.2012.00193.
[5]何泽能, 左雄, 白莹莹, 等. 重庆市城市高温变化特征分析及对策初探[J]. 高原气象, 2013, 32(6): 1803-1811, doi: 10.7522/j.issn.1000-0534.2012.00167.
[6]范引琪, 李春强. 1980-2003 年京、津、冀地区大气能见度变化趋势研究[J]. 高原气象, 2008, 27(6): 1392-1399.
[7]Franzese P, Huq P. Urban dispersion modelling and experimentsin the daytime and nighttime atmosphere[J]. Bound-Layer Meteor, 2011, 139: 395-409.
[8]王颖, 张镭, 胡菊, 等. WRF模式对山谷城市边界层模拟能力的检验及地面气象特征分析[J]. 高原气象, 2010, 29(6): 1397-1407.
[9]An X Q, Zuo H C, Chen L J. Atmospheric environmental capacity of SO<sub>2</sub> in winter over Lanzhou in China: A case study[J]. Adv Atmos Sci, 2007, 24(4): 688-699.
[10]周明煜, 姚文清, 徐祥德, 等. 北京城市大气边界层低层垂直动力和热力特征及其与污染物浓度关系的研究[J]. 中国科学: 地球科学, 2005, 35 (增刊1): 20-30.
[11]刘宇, 胡非, 王式功, 等. 兰州市城区稳定边界层变化规律的初步研究[J]. 中国科学院研究生院学报, 2003, 20(4): 482-487.
[12]Oke T R. Boundary Layer Climate[M]. London: Methuan & Co. LTD, 1987: 274.
[13]王介民. 山谷城市的近地层大气湍流谱特征[J]. 大气科学, 1992, 16(1): 11-16.
[14]胡非, 李昕, 陈红岩, 等. 城市冠层中湍流运动的统计特征[J]. 气候与环境研究, 1999, 4(3): 252-258.
[15]刘辉志, 洪钟祥. 北京城市下垫面边界层湍流统计特征[J]. 大气科学, 2002, 26(2): 241-248.
[16]Roth M. Review of atmospheric turbulence over cities[J]. Quart J Roy Meteor Soc, 2000, 126: 941-991.
[17]Wood C R, Lacser A, Barlow J F, et al. Turbulent flow at 190 m height above London during 2006-2008:A climatology and the applicability of similarity theory[J]. Bound-Layer Meteor, 2010, 137: 77-96.
[18]刘熙明, 胡非, 全利红, 等. 局地相似性关系在城市边界层中的适用性验证[J]. 气候与环境研究, 2009, 14(2): 183-191.
[19]王成刚, 孙鉴泞, 胡非, 等. 城市水泥下垫面能量平衡特征的观测与分析[J]. 南京大学学报: 自然科学版, 2007, 43: 270-279.
[20]苗世光, 窦军霞, Chen F, 等. 北京城市地表能量平衡特征观测分析[J]. 中国科学: 地球科学, 2012, 42(9): 1394-1402.
[21]Oke T R, Spronken-Smith R A, Jauregui E, et al. The energy balance of central Mexico city during the dry season[J]. Atmos Environ, 1999, 33: 3919-3930.
[22]王介民, 王维真, 刘绍明, 等. 近地层能量平衡闭合问题-综述及个例分析[J]. 地球科学进展, 2009, 24(7): 705-712.
[23]徐自为, 刘绍民, 宫丽娟, 等. 涡动相关仪观测数据的处理与质量评价研究[J]. 地球科学进展, 2008, 23(4): 357-370.
[24]何文, 刘辉志, 冯健武. 城市近地层湍流通量及CO<sub>2</sub>通量变化特征[J]. 气候与环境研究, 2010, 15(1): 21-32.
[25]Businger J A, Wangaard J C, Izumi Y, et al. Flux profile relationships in the atmospheric surface layer[J]. J Atmos Sci, 1971, 28(2): 181-189.
[26]Panofsky H A, Tennekes T, Lenschow D H, et al. The characteristics of turbulent velocity components in the surface layer under convective conditions[J]. Bound-Layer Meteor, 1977, 11(3): 355-361.
[27]张宏升, 李富余, 陈家宜. 不同下垫面湍流统计特征的研究[J]. 高原气象, 2004, 23(5): 598-604.
[28]王丙兰, 胡非, 程雪玲, 等. 边界层局地相似理论在草原下垫面的适用性检验[J]. 高原气象, 2012, 31(1): 28-37.
[29]刘红年, 刘罡, 蒋维楣, 等. 关于非均匀下垫面大气边界层研究的讨论[J]. 高原气象, 2004, 23(3): 412-416.
[30]Hu Y Q, Zhang Q. On local similarity of atmospheric boundary layer[J]. Chinese J Atmos Sci, 1993, 17(1): 10-20.
[31]邹钧, 孙鉴泞, 刘罡. 城市近地层湍流特征分析[J].气象科学, 2011, 31(4): 525-533.
[32]徐玉貌, 周朝辅, 李振华, 等. 广州近地层大气的湍流微结构和谱特征[J]. 大气科学, 1993, 17(3): 338-348.
[33]陈铭夏, 李宗恺, 王庆安. 南京市近地层湍流结构及输送特征研究[J]. 气象科学, 2000, 20(2): 111-119.
[34]黄鹤, 李英华, 韩素芹, 等. 天津城市边界层湍流统计特征[J]. 高原气象, 2011, 30(6): 1481-1487.