论文

一次槽后型大暴雨伴冰雹的形成机制和雷达观测分析

  • 张一平 ,
  • 俞小鼎 ,
  • 孙景兰 ,
  • 梁俊平 ,
  • 李周
展开
  • 河南省农业气象保障与应用技术重点实验室, 郑州 450003;2. 河南省气象台, 郑州 450003;3. 中国气象局气象干部培训学院, 北京 100081;4. 河南省气象局, 郑州 450003

收稿日期: 2012-12-22

  网络出版日期: 2014-08-28

基金资助

国家自然科学基金项目(41175043);公益性行业(气象)科研专项(GYHY20090603);河南省科技厅项目(112102310033);河南省气象局项目(Z201401)

Formation Mechanism and Analysis of Radar Observation of a Heavy Rainstorm Accompanied by Hail that Back of Trough

  • ZHANG Yiping ,
  • YU Xiaoding ,
  • SUN Jinglan ,
  • LIANG Junping ,
  • LI Zhou
Expand
  • Henan Key Laboratory of Agrometeorological Ensuring and Applied Technique, Zhengzhou 450003, China;2. Henan Meteorological Observatory, Zhengzhou 450003, China;3. China Meteorological Administration Training Center, Beijing 100081, China;4. Henan Meteorological Bureau, Zhengzhou 450003, China

Received date: 2012-12-22

  Online published: 2014-08-28

摘要

利用常规气象观测资料、新一代天气雷达、自动站、NCEP再分析资料等对西北气流形势下一次局地大暴雨伴多次降雹的强对流天气形成机制和对流系统结构进行了精细化分析。结果表明:(1)局地大暴雨伴冰雹发生在西北气流控制和大气层结极不稳定的形势下,14:00(北京时,下同)CAPE较08:00显著增大,为大暴雨和冰雹提供了不稳定能量;对流层低层的水汽含量大值中心为后向和前向传播新生单体的不断生成提供了充分的水汽条件;地面局地加热不均匀,午后地面温度达到对流温度临界值使地面暖气团自由上升,从而产生初始对流回波。在达到热力对流的条件下,地面中尺度辐合线和露点锋对局地大暴雨伴多次冰雹天气的发生有加强触发作用,地面中尺度低压是辐合维持和水汽集中的重要原因。(2)雷达图上,初始回波在周口附近生成、加强并向东南方向移动的过程中,其后侧和右后侧不断有中γ尺度对流单体生成,新生单体经历了积云生成加强、成熟合并、减弱消散阶段,其传播方向和移动方向近于相反,使周口附近强回波呈准静止动态平衡状态而持续存在。随后,在许昌到太康近东西向带状回波的前侧不断有中γ尺度新对流单体生成,并与周口附近后向传播的对流单体相接,排列成西北-东南向的线状多单体回波带,前向传播和后向传播分别经历了后侧减弱和前侧减弱阶段,中间回波在周口附近发展最旺盛。向前和向后两种传播形式多单体结构中的中γ尺度对流单体形成显著的“列车效应”使周口、西华出现局地大暴雨和多次降雹。在平均径向速度图上有中尺度涡旋,西北-东南向线状对流回波带在中低层有辐合—辐散—辐合相间的结构特征,在高层则与中低层相反,线状雷暴系统的形成和演变与强雷暴下沉气流抬升暖湿空气有较大关系,对流单体生成于低层辐合、高层辐散处。

本文引用格式

张一平 , 俞小鼎 , 孙景兰 , 梁俊平 , 李周 . 一次槽后型大暴雨伴冰雹的形成机制和雷达观测分析[J]. 高原气象, 2014 , 33(4) : 1093 -1104 . DOI: 10.7522/j.issn.1000-0534.2012.00200

Abstract

Using the conventional observation, new generation weather radar, AWS, NCEP data, the weather formation mechanism of a local heavy rainstorm accompanied by repeatedly hail under the northwest flow situation and the structure of mesoscale convective system were detailed analysed. The results showed that: (1)The local heavy rainstorm accompanied by hail occurred in the situation of northwest airflow and atmospheric stratification was very unstable. The value of CAPE at 14:00(Beijing time, hereafter the same) was significantly increased compared to that at 08:00,which provided instability energy for heavy rainstorm and hail; The large value center of water vapor content in the lower-troposphere provided adequate moisture conditions for newborn monomers that generated continued by forward propagation and backword propagation. Local heating of the ground was uneven, the ground temperature reached to the threshold of the convective temperature in the afternoon which made the ground warm air mass free up, and resulted in the initial convective echoes, when it reached thermal convection conditions, the ground mesoscale convergence line and dew-point front for local heavy rainstorm and accompanied by many times hail weather had strengthening and triggering effect. Mesoscale low pressure on the ground was the important reason for convergence maintained and water vapor concentration. (2)On the chart of radar, in the process of the initial echo generated in Zhoukou nearby, strengthened and moved to south-east direction, γ-scale convective cells constantly generated at the rear and right rear of that, the new generated cells experienced the phase of cumulus clouds formed and strengthened, matured and merged, weaked and dissipated. Its direction of propagation and movement closed to opposite, which made the strong echoes near Zhoukou were the state of quasi-stationary dynamic equilibrium and constantly persistent. Subsequently, new meso-γ-scale convective cells were constantly generated in the front side of the band echo that nearly east-west from Xuchang to Taikang, And it linked to the convective cells of backward spread near Zhoukou, and arrayed into northwest-southeast linear multi-cells echo bands. Forward propagation and backword propagation respectively experienced back weakened and front weakened stages. And the middle echo near Zhoukou developed the most productive. The meso-γ-scale convective cells in the multi-cell structure of two forms of forward propagation and back propagation formed a remarkable ‘train effect’, which made local heavy rainstorm with repeatedly hail weather happened in Zhoukou and Xihua. The charts of average radial velocity contained mesoscale vortex, and the northwest-southeast linear convection echo bands had the structural features of convergence, divergence and convergence alternated in the middle and lower layers. The upper layer was opposite with the middle and lower layers. The formation and evolution of linear thunderstorm system were larger related with that downdraft uplifted warm and humid air of severe thunderstorm. The convective cells were generated in the low-level that appearred convergence, and the upper level that appearred divergence.

参考文献

[1]王家祁, 郑似苹, 崔玉琴, 等. 中国暴雨地域分布概述[J]. 水文, 1991(2):1-7.
[2]孙淑清, 周玉淑. 近年来我国暴雨中尺度动力分析研究进展[J]. 大气科学, 2007, 30(6):1171-1188.
[3]陈忠明, 徐茂良, 闵文彬, 等. 1998年夏季西南低涡活动与长江上游暴雨[J]. 高原气象, 2003, 22(2):162-167.
[4]周海光. 2008年8月1-2日滁州特大暴雨双多普勒雷达三维风场反演试验的初步结果[J]. 高原气象, 2009, 28(6):1422-1433.
[5]谢永刚, 王茜. 沙兰镇突发性洪水灾害损失评估及其反思[J]. 灾害学, 2006, 21(2):76-80.
[6]陶诗言. 中国之暴雨[M]. 北京:科学出版社, 1980:1-10.
[7]丁一汇. 1991年江淮流域持续性特大暴雨研究[M]. 北京:气象出版社, 1993:69-130.
[8]陆尔, 丁一汇, 李月红. 1991年江淮特大暴雨的位涡分析与冷空气活动[J]. 应用气象学报, 1994, 5(3):266-274.
[9]袁美英, 李泽椿, 张小玲, 等. 中尺度对流系统与东北暴雨的关系[J]. 高原气象, 2011, 30(5):1224-1231.
[10]盛日锋, 王俊, 龚佃利, 等. 济南“7.18”大暴雨中尺度分析[J]. 高原气象, 2011, 30(6):1554-1565.
[11]赖绍钧, 何芬, 陈海山, 等. 华南前汛期福建一次致洪暴雨过程的中尺度结构特征[J]. 高原气象, 2012, 31(1): 167-175.
[12]李晓霞, 尚大成, 谌芸, 等. 甘肃陇南两次不同强度暴雨天气的中尺度特征分析[J]. 高原气象, 2013, 32(5): 1389-1399, doi: 10.7522/j.issn.1000-0534.2012.00130.
[13]何立富, 陈涛, 周庆亮, 等. 北京“7·10”暴雨β-中尺度对流系统分析[J]. 应用气象学报, 2007, 18(5):655-665.
[14]陈敏, 郑永光, 王洪庆, 等. 一次强降水的中尺度对流系统模拟研究[J]. 气象学报, 2005, 63(3):313-324.
[15]矫梅燕, 毕宝贵, 鲍媛媛, 等. 2003年7月3~4日淮河流域大暴雨结构和维持机制分析[J]. 大气科学, 2006, 30(3):475-490.
[16]徐珺, 毕宝贵, 谌芸. 济南7.18大暴雨中尺度分析研究[J]. 高原气象, 2010, 29(5):1218-1229.
[17]伍志方, 易爱民, 叶爱芬, 等. 广州短时大暴雨多普勒特征和成因分析[J]. 气象科技, 2006, 31(4):455-459.
[18]蒋年冲, 刘娟, 胡雯, 等. 安徽夏季中γ尺度对流云的雷达回波特征[J]. 气象, 2007, 33(10):9-14.
[19]何群英, 东高红, 贾慧珍, 等. 天津一次突发性局地大暴雨中尺度分析[J]. 气象, 2009, 35(7):16-22.
[20]东高红, 解以杨, 于莉莉. 一次局地大暴雨的落区分析与预报[J]. 气象, 2010, 36(6):50-58.
[21]段丽, 卞素芬, 俞小鼎, 等. 用SA雷达产品对京西三次局地暴雨落区形成的精细分析[J]. 气象, 2009, 35(3):21-28.
[22]郭虎, 段丽, 卞素芬, 等. 利用加密探测资料产品对“06731”北京奥体中心局地暴雨结构特征的精细分析[J]. 热带气象学报, 2008, 24(3):220-227.
[23]郭虎, 段丽, 杨波, 等. 0679北京香山局地大暴雨的中尺度天气分析[J]. 应用气象学报, 2008, 19(3):265-275.
[24]袁美英, 李泽椿, 张小玲. 东北地区一次短时大暴雨β中尺度对流系统分析[J]. 气象学报, 2010, 689(1):125-136.
[25]张小玲, 陶诗言, 张顺利. 梅雨锋上的三类暴雨[J]. 大气科学, 2004, 28(2): 187-205.
[26]孙继松.北京地区夏季边界层急流的基本特征及形成机理研究[J]. 大气科学, 2005, 29(3):445-452.
[27]王丽荣, 刘黎平, 王立荣, 等. 一次局地短时大暴雨的中-γ尺度分析[J]. 高原气象, 2011, 30(1):217-225.
[28]吴海英, 曾明剑, 尹东屏, 等. 一次苏皖特大暴雨过程中边界层急流结构演变特征和作用分析[J]. 高原气象, 2010, 29(6):1431-1440.
[29]孙继松, 杨波. 地形与城市环流共同作用下的β中尺度暴雨[J]. 大气科学, 2008, 32(6):1352-1364.
[30]俞小鼎. 强对流天气的多普勒天气雷达探测和预警[J]. 气象科技进展, 2011, 1(1):31-41.
[31]冯晋勤, 童以长, 罗小金. 一次中-β尺度局地大暴雨对流系统的雷达回波特征[J]. 气象, 2008, 34(10):50-54.
[32]俞小鼎, 姚秀萍, 熊廷南, 等. 多普勒天气雷达原理与业务应用[M]. 北京: 气象出版社, 2007:90-176.
[33]俞小鼎, 王迎春, 陈明轩, 等. 新一代天气雷达与强对流天气预警[J]. 高原气象, 2005, 24(3):456-464.
[34]姚叶青, 俞小鼎, 张义军, 等. 一次典型飑线过程多普勒天气雷达资料分析[J]. 高原气象, 2008, 27(2):373-381.
[35]孙继松, 王华, 王令, 等. 城市边界层过程在北京2004年7月10日局地暴雨过程中的作用[J]. 大气科学, 2006, 30(2):221-234.
[36]孙继松, 王华. 重力波对一次雹暴天气过程演变的影响[J]. 高原气象, 2009, 28(1):165-172.
文章导航

/