In order to further understand the effect of the middle and low-level horizontal wind speed on the feature of thunderstorm dynamic field, electrical activities and precipitation, four sensitivity tests in a three-dimensional dynamics-electrification coupled model with different horizontal speeds, including without wind, weak wind, moderate intensity wind and somewhat strong wind were studied. The simulation results show that: As the wind speed increases, particle growth was inhibited,the electrification process of thunderstorm will be slowed down and the electrification regional transfer occurs, longer electrification time would make the storm produced more greater electric field and occurred more severe discharge process, however, if the wind is too strong, there would no lightning happen. Moderate intensity wind is most conducive to lightning. In addition, wind speed in a certain range of growth will increase the precipitation, but if the wind is too strong, precipitation will reduce. These results showed that middle and low-level speed can make significance impact on lightning and precipitation, we should comprehensive consider the wind speed influence on thunderstorm dynamic field and microphysical processes in the study of lightning and precipitation.
[1]Marwitz J D. The structure and motion of severe hailstorms. PartⅠ: Supercell storms[J]. J Appl Meteor, 1972, 11: 166-179.
[2]Marwitz J D. The structure and motion of severe hailstorms.PartⅡ: Multicell storms[J]. J Appl Meteor, 1972, 11: 180-188.
[3]Marwitz J D.The structure and motion of severe hailstorms.PartⅢ: Severely sheared storms[J]. J Appl Meteor, 1972, 11: 189-201.
[4]Evans J S, Doswell ⅢC A. Examination of derecho environments using proximity soundings[J]. Wea Forecasting, 2001, 16: 329-342.
[5]Markowski P, Hannon C, Frame J, et al. Characteristics of vertical wind profiles near supercells obtained from the rapid update cycle[J]. Wea Forecasting, 2003, 18: 1262-1272.
[6]Fovell R G, Ogura Y. Effect of vertical wind shear on numerically simulated multicell storm structure[J]. J Atmos Sci, 1989, 46: 3144-3176.
[7]何宏让, 陈家华, 魏绍远. 二维滞弹性非静力平衡云模式第一部分低空风切变对云微物理过程的影响[J]. 气象科学, 1996, 16(3): 216-224.
[8]周文贤, 齐彦彬, 张永强. 风切变对强对流云降水影响的模拟研究[J]. 气象科学, 1996, 16(1): 75-80.
[9]Schlesinger R E. A three-dimensional numerical model of an isolated thunderstorm: Part I. Comparative experiments for variable ambient wind shear[J]. J Atmos Sci, 1978, 35: 690-713.
[10]Weisman M L, Klemp J B. The dependence of numerically simulated convective storms on vertical wind shear and buoyancy[J]. Mon Wea Rev, 1982, 110: 504-520.
[11]Weisman M L, Klemp J B. The structure and classification of numerically simulated convective storms in directionally varying wind shears[J]. Mon Wea Rev, 1984, 112: 2479-2498.
[12]潘晓滨, 陈家华, 魏绍远. 垂直风切变对风暴云影响的数值模拟[J]. 气象科学, 1996, 16(2): 135-143.
[13]Brook M, Nakano M, Krehbiel P, et al. The electrical structure of the hokuriku winter thunderstorms[J]. J Geophys Res, 1982, 87(C2): 1207-1215.
[14]Ray P S, Macgorman D R, Rust W D, et al. Lightning location relative to storm structure in a supercell storm and a multicell storm[J]. J Geophys Res, 1987, 92(D5): 5713-5724.
[15]Schlesinger R E. A numerical model of deep moist convection: PartⅠ. Comparative experiments for variable ambient moisture and wind shear[J]. J Atmos Sci, 1973, 30: 835-856.
[16]何宏让, 陈家华, 魏绍远. 二维滞弹性非静力平衡云模式第二部分-中低空风切变对云微物理过程的影响[J]. 气象科学, 1996, 16(4): 345-354.
[17]徐华英, 吉武胜, 黄美元. 风切变对积云发展影响的数值模拟研究[J]. 大气科学, 1988, 12(4): 405-411.
[18]孔凡铀, 黄美元, 徐华英. 对流云中冰相过程的三维数值模拟Ⅰ:模式建立及冷云参数化[J]. 大气科学, 1990, 14(4):441-453.
[19]孔凡铀, 黄美元, 徐华英. 对流云中冰相过程的三维数值模拟Ⅱ:繁生过程作用[J]. 大气科学, 1991, 15(6):78-88.
[20]孙安平, 言穆弘, 张义军, 等. 三维强风暴动力-电耦合数值模拟研究Ⅰ:模式及其电过程参数化方案[J]. 气象学报, 2002, 60(6):722-731.
[21]孙安平, 言穆弘, 张鸿发, 等. 三维强风暴动力-电耦合数值模拟研究-模式的初步检验[J]. 高原气象, 2000, 19(4): 435-440.
[22]孙溦. 北京城区与郊区雷暴气候特征及其变化对比分析[J]. 气候与环境研究, 2011, 16(5): 649-656.
[23]郭虎, 熊亚军, 付宗钰, 等. 北京市自然雷电与雷电灾害的时空分布[J]. 气象, 2008, 34(1): 12-18.
[24]张伟伟, 田杨萌, 王彩霞, 等. 北京地区的雷电物理特征[J]. 北京信息科技大学学报, 2011, 26(3): 53-57.
[25]Wissmeier U, Goler R. A comparison of tropical and midlatitude thunderstorm evolution in response to wind shear[J]. J Atmos Sci, 2009, 66: 2385-2401.
[26]郭凤霞, 孙京. 雷暴云起电机制及其数值模拟的回顾与进展[J]. 高原气象, 2012, 31(3): 862-874.
[27]Takahashi T. Thunderstorm electrification-A numerical study[J]. J Atmos Sci, 1984, 41: 2541-2558.
[28]Heldson J, Farley R. A numerical modeling study of a Montana thunderstorm[J]. J Geophys Res, 1987, 92: 5661-5675.
[29]Rawling F. A numerical study of thunderstorm electrification using a 3D model incorporating the ice phase[J]. Quart J Roy Meteor Soc, 1972, 98: 369-382.
[30]张廷龙, 杨静, 楚荣忠, 等. 平凉一次雷暴云内的降水粒子分布及其电学特征的探讨[J]. 高原气象, 2012, 31(4): 1091-1099.
[31]Saunders C P R, Keith W D, Mitzeva R P. The effect of liquid water on thunderstorm charging[J]. J Geophys Res, 1991, 95(D6): 11007-11017.
[32]郭凤霞, 张义军, 言穆弘. 雷暴云首次放电前两种非感应起电参数化方案的比较[J]. 大气科学, 2010, 34(2): 361-373.
[33]唐红玉, 顾建锋, 俞胜宾, 等. 西南地区降水日变化特征分析[J]. 高原气象, 2011, 30(2): 376-384.
[34]马学谦, 孙安平. 祁连山区降水的大气特征分析[J]. 高原气象, 2011, 30(5): 1392-1398.
[35]刘扬, 韦志刚, 李振朝, 等. 中国北方地区降水变化的分区研究[J]. 高原气象, 2012, 31(3): 638-645.