论文

3个全球模式对近地层风场预报能力的对比检验

  • 何晓凤 ,
  • 周荣卫 ,
  • 孙逸涵
展开
  • 中国气象局公共气象服务中心, 北京 100081

收稿日期: 2013-01-21

  网络出版日期: 2014-10-28

基金资助

中国气象局气象关键技术集成与应用项目(CAMGJ2012M76);公益性行业(气象)科研专项(GYHY201006035)

Verification on Surface Wind Speed of Three Global Circulation Models in China

  • HE Xiaofeng ,
  • ZHOU Rongwei ,
  • SUN Yihan
Expand
  • Public Meteorological Service Center, China Meteorological Administration, Beijing 100081, China

Received date: 2013-01-21

  Online published: 2014-10-28

摘要

为了使检验的预报风速具有可比性,首先利用WRF模式对3种常用全球环流预报场(ECMWF、GFS、T639)在中国区域进行4个典型月的10 km水平分辨率的降尺度计算,再利用中国400座测风塔同期观测资料对24 h内70 m高度的风速预报性能进行了对比检验。结果表明:(1)从4个典型月的全风速检验情况来看,ECMWF预报效果略好于GFS,T639稍差,但三者做简单的集合平均可获得最优的预报结果;(2)3种全球预报场降尺度后的预报风速误差平面分布比较相似,整体来看,内蒙古、东北和沿海部分区域误差较小,内陆地区误差较大,尤其在高原和内陆复杂地形下预报效果不佳;(3)从预报风速在4个风速区间的平均检验情况来看,在(0,3] m·s-1和(3,15] m·s-1区间内,ECMWF的TS评分略好一些,在(15,25] m·s-1区间GFS的TS评分最高,在25 m·s-1以上ECMWF具有明显优势;(4)在(3,15] m·s-1区间,3种全球环流预报场的风速预报误差平均在35%左右,ECMWF略好于GFS,GFS略好于T639;(5)从各测风塔点位最优预报效果的全球场统计情况来看,在(3,15] m·s-1区间内,有55.5%的点是ECMWF效果最优,24.8%是GFS最优,19.7%是T639最优。

本文引用格式

何晓凤 , 周荣卫 , 孙逸涵 . 3个全球模式对近地层风场预报能力的对比检验[J]. 高原气象, 2014 , 33(5) : 1315 -1322 . DOI: 10.7522/j.issn.1000-0534.2013.00093

Abstract

In order to meet the user's needs for high-precision wind power forecast, many organizations are using mesoscale model to forecast high-resolution wind field in the area of interest. The forecast fields of global circulation models, which are used as the background fields of mesoscale model, have an important impact on the forecast results. So wind speed forecast accuracy is very important. In order to compare performance of different global circulation models, firstly, WRF model was used to downscale the forecast fields of ECMWF, GFS and T639 model in the whole China with 10 km×10 km horizontal resolution in four typical months. Then observation wind speed of 400 wind masts and forecast results at 70 m height were contrasted. The results show that: (1) From the average verification results of four typical months in the full wind segment, ECMWF was slightly better than GFS, and T639 was slightly the worst. If averaging three forecasting wind speed, the best ensemble prediction result can be obtained. (2) The plane distribution of wind speed forecast error was similar, and the forecast error in Inner Mongolia, Northeast and parts of coastal area was less, while the error in inland area was bigger, especially it was worst in plateau and complex terrain area. (3) As by verification results of four wind speed segment of forecast wind speed indicated that in (0, 3] m·s-1 and (3, 15] m·s-1 segment TS score of ECMWF field was slightly better, in (15, 25] m·s-1 segment the TS score of GFS field was best, and in bigger than 25 m·s-1 segment ECMWF field had obvious advantages. (4) In the wind segment of (3, 15] m·s-1, the forecast wind error are almost 35%. But ECMWF was slightly better than the GFS, and GFS was slightly better than T639. (5) There was 55.5% wind masts where ECMWF had the best wind forecast performance, the percent of GFS was 24.8%, and the percent of T639 was 19.7% in the wind segment of (3, 15] m·s-1.

参考文献

[1]中国可再生能源学会风能专业委员会. 2011年中国风电装机容量统计[J]. 风能, 2012, 3: 40-48.
[2]范高峰, 王伟胜, 刘纯, 等. 基于人工神经网络的风电功率预测[J]. 中国电机工程学报, 2008, 28(34): 118-123.
[3]常蕊, 朱蓉, 柳艳香, 等. 基于均生函数的风电场风速短临预报模型[J]. 气象, 2013, 39(2): 226-233.
[4]Pinson P, Nielsen H A, Madsen H, et al. Skill forecasting from ensemble predictions of wind power[J]. Applied Energy, 2009, 86: 1326-1334.
[5]孙川永. 风电场风电功率短期预报技术研究[D]. 兰州: 兰州大学, 2009: 1-134.
[6]程兴宏, 陶树旺, 魏磊, 等. 基于WRF模式和自适应偏最小二乘回归法的风能预报试验研究[J]. 高原气象, 2012, 31(5): 1461-1469.
[7]贺志明, 吴琼, 陈建萍. 沙岭风场风速预报试验分析[J]. 资源科学, 2010, 2(4): 656-662.
[8]任永建, 刘敏, 袁业畅, 等. 湖北省风能资源的高分辨率数值模拟试验[J]. 自然资源学报, 2012, 27(6): 1035-1043.
[9]王兴, 马鹏里, 张铁军, 等. MM5模式及CALMET模型对甘肃酒泉地区风能资源的数值模拟[J]. 高原气象, 2012, 31(2): 428-435.
[10]Cui J, Zhou X S, Chen L Q, et al. Synoptic verification of precipitation forecast of three NWP models from May to August of 2008 in Liaoning Province[J]. Meteor Environ Res, 2010, 1(8): 7-11.
[11]刘一. 2012年3-5月T639、ECMWF及日本模式中期预报性能检验[J]. 气象, 2012, 38(8): 1017-1022.
[12]王雨. 若干数值模式对2003 年夏季青藏高原中南部降水预报检验[J]. 高原气象, 2004, 23(增刊1): 53-58.
[13]张宁娜, 黄阁, 吴曼丽, 等. 2010年国内外3种数值预报在东北地区的预报检验[J]. 气象与环境学报, 2012, 28(2): 28-33.
[14]周慧, 崔应杰, 胡江凯, 等. T639模式对2008年长江流域重大灾害性降水天气过程预报性能的检验分析[J]. 气象, 2010, 36(9): 60-67.
[15]刘珂, 许吟隆, 陶生才, 等. 多模式集合对中国气温的模拟效果及未来30年中国气温变化预估[J]. 高原气象, 2011, 30(2): 363-370.
[16]石彦军, 任余龙, 王式功, 等. BCC_CSM气候模式对中国区域气候变化模拟能力的检验[J]. 高原气象, 2012, 31(5): 1257-1267.
[17]董广涛, 陈伯民, 陈葆德. 区域气候模式RegCM3在华东地区夏季的10年回报和2010年业务预报[J]. 高原气象, 2012, 31(6): 1601-1610.
[18]李秀萍, 徐宗学, 程华琼. 多模式集合预估21世纪淮河流域气候变化情景[J]. 高原气象, 2012, 31(6): 1622-1635.
[19]高学杰, 李栋梁, 赵宗慈, 等. 温室效应对我国青藏高原及青藏铁路沿线气候影响的数值模拟[J]. 高原气象, 2003, 22(5): 458-463.
[20]张冬峰, 高学杰, 白虎志, 等. RegCM3模式对青藏高原地区气候的模拟[J]. 高原气象, 2005, 24(5): 714–720.
[21]江滢, 罗勇, 赵宗慈. 全球气候模式对未来中国风速变化预估[J]. 大气科学, 2010, 34(2): 323-336.
[22]http://www.ecmwf.int/products/data/, 2013-01-03.
[23]http://www.ncdc.noaa.gov/model-data/global-forcast-ststem-gfs, 2012-02-12.
[24]管成功, 陈起英, 佟华, 等. T639L60全球中期预报系统预报试验和性能评估[J]. 气象, 2008, 34(6): 11-16.
[25]http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html, 2014-09-18.
文章导航

/