利用NCEP1°×1°再分析资料、FY-2E卫星云图资料以及自动气象站观测资料分析了2012年6月24-28日发生在贵州等地的暴雨天气过程。结果表明: 欧亚中高纬地区稳定的环流形势以及来自孟加拉湾和南海的暖湿气流输送, 为暴雨的发生、发展提供了有利的背景条件; 东移的西南涡与云贵高原涡系统合并、加强, 在贵州等地造成强降雨天气; 暴雨过程中, 两涡区域南边界的水汽输送贡献最大, 而西边界的水汽流入在两涡发展初期更为重要; 两涡靠近阶段, 贵州上空有中尺度对流复合体形成, 降雨主要出现在黑体亮温低值中心及其梯度大值区; 另外, 降雨持续时间、强度变化与西南涡和云贵高原涡的发展、合并联系密切, 广义湿位温高值区及其梯度大值区的位置能较好地反映地面降雨落区。
A continuous rainstorm occurred in Guizhou Province from June 24th to June 28th 2012 is analyzed using NCEP data of 1°×1° with 6-hour interval, FY-2E satellite image and automatic observation station data. The results show that: Stable circulation in Europe-Asia at mid-high latitudes and the water vapor from Bay of Bengal and South China Sea provided beneficial conditions for the occurrence and development of the rainstorm. The easterly Southwest China Vortex (SWCV) and the Yun-Gui vortex system which is born in Yunnan-Guizhou plateau couple to strengthen, which causes a heavy rain in Guizhou Province. In the process of rainstorm, the water vapor transport from the southern border of two vortexes makes the greatest contribution to the rainfall, but the water vapor transport from the western border is more important at the early stage of two vortexes development. The mesoscale convective complexes appear in Guizhou Province during the two vortexes approaching and rainfall areas are located in the center of low black body temperature (TBB) areas and high TBB gradient areas. In addition, the persistence and intensity of the precipitation have close relationship with the development and merger of two vortexes. The high generalized moist potential temperature areas and high generalized moist potential temperature gradient areas also can reflect the location of the rainfall zones on the ground.
[1]叶笃正, 高由禧. 青藏高原气象学[M]. 北京: 科学出版社, 1979: 115-121.
[2]赵思雄. 西南低涡结构的个例分析[C]. 青藏高原气象会议论文集, 1977: 296-306.
[3]卢敬华. 西南低涡概论[M]. 北京: 气象出版社, 1986: 270.
[4]陶诗言等. 中国之暴雨[M]. 北京: 科学出版社, 1980: 225.
[5]陈启智, 黄奕武, 王其伟, 等. 1990-2004年西南低涡活动的统计研究[J]. 南京大学学报: 自然科学版, 2007, 43(6): 633-642.
[6]陈忠明, 缪强, 闵文彬. 一次强烈发展西南低涡的中尺度结构特征分析[J]. 应用气象学报, 1998, 9(3): 273-282.
[7]李跃清, 黄仪方. 西南低涡暴雨的边界层诊断分析[J]. 四川气象, 1993(3): 21-25.
[8]Kuo YingHwa, Cheng LinSheng, Bao JianWen. Numerical simulation of the 1981 Sichuan flood. Part I: Evolution of a mesoscale southwest vortex[J]. Mon Wea Rev, 1988, 116(12): 2481-2504.
[9]王智, 高坤, 翟国庆. 一次与西南低涡相联系的低空急流的数值研究[J]. 大气科学, 2003, 27(1): 75-85.
[10]李国平, 万军, 卢敬华. 暖性西南低涡生成的一种可能机制[J]. 应用气象学报, 1991, 2(1): 91-99.
[11]刘富明, 杜文杰. 触发四川盆地暴雨的高原涡的形成和东移[M]. 夏半年青藏高原对我国天气的影响. 北京: 科学出版社, 1987: 123-134.
[12]陈栋, 李跃清, 黄荣辉. 在“鞍”型大尺度环流背景下西南低涡发展的物理过程分析及其对川东暴雨发生的作用[J]. 大气科学, 2007, 31(2): 185-201.
[13]李德俊, 李跃清, 柳草, 等. 基于TRMM卫星探测对宜宾夏季两次暴雨过程的比较分析[J]. 气象学报, 2010, 68(4): 559-568.
[14]蒋璐君, 李国平, 母灵, 等. 基于TRMM资料的西南涡强降水结构分析[J]. 高原气象, 2014, 33(3): 607-614, doi: 10.7522/j.issn.1000-0534.2013.00094.
[15]邹波, 陈忠明. 一次西南低涡发生发展的中尺度诊断[J]. 高原气象, 2000, 19(2): 141-149.
[16]韦统健, 薛建军. 影响江淮地区的西南涡中尺度结构特征[J]. 高原气象, 1996, 15(4): 456-463.
[17]李云川, 张迎新, 马翠平, 等. 热带低压远距离对西南涡稳定加强的作用[J]. 高原气象, 2012, 31(6): 1551-1561.
[18]江玉华, 杜钦, 赵大军, 等. 引发四川盆地东部暴雨的西南低涡结构特征研究[J]. 高原气象, 2012, 31(6): 1574-1582.
[19]王兴荣, 吴可军, 石春娥. 凝结几率函数的引进和非均匀饱和湿空气动力学方程组[J]. 热带气象学报, 1999, 15(1): 64-69.
[20]Gao S T, Wang X R, Zhou Y S. Generation of generalized moist potential vorticity in a frictionless and moist adiabatic flow[J]. Geophys Res Lett, 2004(31), L12113, doi: 10.1029/2003GL019152.