利用大气化学模式WRF-Chem建立3D_Var同化系统, 对美国西部地区一次PM2.5化学污染过程的PM2.5总量及其主要成分(黑碳、有机碳、硝酸盐、硫酸盐)进行了同化试验, 并与未同化结果和实况进行了区域、单站及时间序列的对比。结果表明, 此系统具有较好的同化效果, 同化试验结果与实况接近, 站点分布和演变趋势吻合较好; 任取3个站点进行单点时间序列演变和散点分布分析, 同化后相关系数有所增加, 均在0.85以上, 在所选3个站点中相关系数最大达0.95, 均方根误差都明显减小; 数值模拟没有模拟出的大值中心, 但经同化后能再现出来; 模式模拟PM2.5低浓度值的演变趋势及数值要好于高浓度值; 随着模式的运行, 同化前期效果最好, 同化中期和后期结果与实况偏差有所增加; 模式还存在系统偏差和奇点问题, 这些是模式需要改进的地方。
A three-dimensional variational system was established rely on the fully coupled meteorology-chemistry model (WRF-Chem) and used to carry a assimilation experiment about the ground-level PM2.5 and its main components: black carbon, organic carbon, nitrate, sulfate in Los Angeles in the west of American. At the same time we compare the area distribution, single station and temporal variations of the output with control experiment and observed. The results show that: This system has a good effect of assimilation, assimilation results and live closer to the site distribution and evolution of the trend in good agreement; take three sites for the evolution of single-point time series and scatter plot analysis, assimilation correlation coefficient increase in more than 0.85, the correlation coefficient selected three sites up to 0.95, the root mean square error has significantly reduced; numerical simulation did not simulate the large value of the center can be reproduced by assimilation; model simulations the low concentration of PM2.5 evolution of trends and values better than the high-concentration values; with the mode of operation, the pre-assimilation results is better, the deviation of assimilation in mid-period and late period and observation increase; modes also exist systematic bias and singularity, these are the areas for improvement mode.
[1]王明星, 郑循华. 大气化学概论[M]. 北京: 气象出版社, 2005: 70-71.
[2]权建农, 张晓山, 段宁, 等. 中国西南和华南地区硫沉降数值模拟[J]. 高原气象, 2007, 26(2): 326-332.
[3]Jerome D F, William I G Jr, Richard C E. et al. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry aerosol model[J]. J Geophys Res, 2006, 111, D21305.
[4]Xuexi T, Sasha M, Li GuoHui, et al. Characterizations of chemical oxidants in Mexico City: A regional chemical dynamical model (WRF-Chem) study[J]. Atmos Environ, 2007, 41: 1989-2008.
[5]Fuhai G, Zhao Chunsheng, Xu Tang, et al. Analysis of ozone and VOCs measured in Shanghai: A case study[J]. Atmos Environ, 2007, 41: 989-1001.
[6]庄炳亮, 王体健, 李树. 中国地区黑碳气溶胶的第一间接辐射强迫与气候效应[J]. 高原气象, 2009, 28(5): 1095-1104.
[7]王志立, 张华, 郭品文. 南亚地区黑碳气溶胶对亚洲夏季风的影响[J]. 高原气象, 2009, 28(2): 419-424.
[8]宿兴涛, 王汉杰. 中国黑碳气溶胶分布特征与辐射强迫的模拟研究[J]. 大气科学学报, 2009, 32(6): 798-806.
[9]孙燕, 张备, 严文莲, 等. 南京及周边地区一次严重烟霾天气的分析[J]. 高原气象, 2010, 29(3): 794-800.
[10]程兴宏, 徐祥德, 丁国安, 等. 不同大气污染物监测密度对CMAQ源同化修正效果影响的模拟[J]. 高原气象, 2010, 29 (1): 222-229.
[11]岳治国, 刘晓东, 梁谷. 气溶胶对北京地区不同类型云降水影响的数值模拟[J]. 高原气象, 2011, 30(5): 1356-1367.
[12]严明良, 缪启龙, 袁成松, 等. 沪宁高速公路一次大雾过程的数值模拟及诊断分析[J]. 高原气象, 2011, 30(2): 428-436.
[13]吴蓬萍, 韩志伟. 东亚地区硫酸盐气溶胶间接辐射和气候效应的数值模拟研究[J]. 大气科学, 2011, 35(3): 547-559.
[14]胡海波, 刘超, 张媛, 等. CAM3.0模式中黑碳及硫酸盐气溶胶浓度变化对东亚春季气候的影响研究[J]. 气象科学, 2011, 31(4): 466-474.
[15]赵建华, 李耀辉, 蒲朝霞, 等. GRAPES沙尘数值预报系统对一次沙尘暴沙尘浓度同化模拟试验分析[J]. 高原气象, 2012, 31 (3): 697-705.
[16]郝民, 张华, 陶士伟, 等. 变分质量控制在区域GRAPES-3DVAR中的应用研究[J]. 高原气象, 2013, 32 (1): 122-132, doi: 10.7522/j.issn.1000-0534.2013.00013.
[17]侯雪伟, 朱彬, 康汉青, 等. MOZART-4大气化学模式模拟东亚季风对对流层污染物的影响: 模式验证[J]. 高原气象, 2013, 32(2): 387-401, doi: 10.7522/j.issn.1000-0534. 2012.00038.
[18]王钊, 彭艳, 车慧正, 等. 近10年关中盆地MODIS气溶胶的时空变化特征[J]. 高原气象, 2013, 32 (1): 234-242, doi: 10.7522/j.issn.1000-0534.2013.00023.
[19]崔应杰, 王自发, 朱江, 等. 空气质量数值模式预报中资料同化的初步研究[J]. 气候与环境研究, 2006, 11(5): 616-626.
[20]Li Z, Chao Y, McWilliams J C, et al. A three dimensional variational data assimilation scheme for the regional ocean modeling system[J]. J Atmos Ocean Technol, 2008, 25: 2074-2090.
[21]Li Z, Chao Y, McWilliams J C, et al. A three dimensional variational data assimilation scheme for the Regional Ocean Modeling System: Implementation and basic experiments[J]. J Geophy Res, 2008, doi:10.1029/2006JC004042.
[22]Zang Zengliang, Li Zhijin, Chao Yi, et al. A three-dimensional variational data assimilation scheme for multiple aerosol species with WRF/CHEM and an application to PM<sub>2.5</sub> prediction[J]. Atmos Chem Phys Discuss, 2012, 12: 13515-13552, doi: 10.5194/acpd-12-13515-2012.
[23]Skamarock W C, Klemp J B, Dudhia J, et al. A description of the advanced research WRF version 2[R]. 2005 NCAR Tech Note, NCAR/TN-468+STR, Natl Cent for Atmos Res, Boulder, CL, 2005: 8.
[24]Georg A G, Steven E P, Rainer S, et al. Fully coupled online chemistry within the WRF model[J]. Atmos Environ, 2005, 39: 6957-6975.