论文

8、9月沈阳地区卫星观测云垂直结构的气候特征分析

  • 赵姝慧 ,
  • 班显秀 ,
  • 袁健 ,
  • 耿树江 ,
  • 王胜杰 ,
  • 秦鑫 ,
  • 张鹏亮 ,
  • 刘旸 ,
  • 董博
展开
  • 辽宁省人工影响天气办公室, 沈阳 110166;2. 中国气象局资产管理事务中心, 北京 100081;3. 沈阳市气象局, 沈阳 100186

收稿日期: 2012-12-11

  网络出版日期: 2014-12-28

基金资助

"十二五"辽宁省重点科技攻关项目(201102383); 辽宁省气象局科研课题"Cloudsat卫星与探空资料结合分析降水云系的性质和垂直结构特征"

Statistical Analysis on Climate Characteristics of the Cloud Vertical Structure Using Satellite in Shenyang Region during August and September

  • ZHAO Shuhui ,
  • BAN Xianxiu ,
  • YUAN Jian ,
  • GENG Shujiang ,
  • WANG Shengjie ,
  • QIN Xin ,
  • ZHANG Pengliang ,
  • LIU Yang ,
  • DONG Bo
Expand
  • Weather Modification Office in Liaoning Province, Shenyang 110166, China;2. China Meteorological Administration Asset Operation Centre, Beijing 100081, China;3. Shenyang Meteorological Service, Shenyang 100186, China

Received date: 2012-12-11

  Online published: 2014-12-28

摘要

利用Cloudsat和CALIPSO卫星资料统计分析了8、9月沈阳地区云系的垂直结构特征。结果表明, 8月下旬和9月上旬沈阳地区出现的云系以单层云为主, 所占比例分别是72.43%和63.5%; 双层云所占比例分别是27.1%和28.62%; 其余为三层云。8月下旬, 低云的云底高度在0.5~1.5 km之间, 中云在3.8~4.0 km之间, 高云在8~9 km之间; 9月上旬, 低云的云底高度在1.0~1.5 km之间, 中云之上如果没有其他云层, 其云底高度在5.0 km以上, 如果之上还有云层, 则其云底高度在3.2~4.5 km之间, 高云之下如果没有其他云层, 云底高度在7.4~7.8 km之间, 如果之下还有其他云层, 其云底高度在9 km以上。建立的8、9月沈阳地区作业云系垂直结构特征模型能够为人工影响作业方案的设计提供有效参考。

本文引用格式

赵姝慧 , 班显秀 , 袁健 , 耿树江 , 王胜杰 , 秦鑫 , 张鹏亮 , 刘旸 , 董博 . 8、9月沈阳地区卫星观测云垂直结构的气候特征分析[J]. 高原气象, 2014 , 33(6) : 1640 -1647 . DOI: 10.7522/j.issn.1000-0534.2013.00113

Abstract

The characteristics of the cloud vertical structure in Shenyang region was analyzed using Cloudsat and CALIPSO satellite data during August and September in order to provide the climate background information of weather modification. The results show that: From late August to early September, clouds appeared in Shenyang region was mainly in the single-layer clouds, and the proportion respectively was 72.43% and 63.5%. The double layer clouds proportion was 27.1% and 28.62%, and the remainder was three layer clouds. In late August, the height of cloud base for low clouds was among 0.5~1.5 km, the middle clouds was among 3.8~4.0 km and the high clouds was among 8~9 km. In early September, the low clouds cloud base height was between 1.0 ~ 1.5 km. Cloud base height of middle clouds was more than 5.0 km if there was no cloud on the top, else the cloud base height was among 3.2~4.5 km. Cloud base height of high clouds was among 7.4~7.8 km if there was no cloud under the cloud, else the cloud base height was more than 9 km. Finally, a vertical structure model of the operating clouds was created and the reference program was designed in order to provide a reference for weather modification operation.

参考文献

[1]Hartmann D L, Ockert-bell M E, Michelsen M L. The effect of cloud type on earths energy balance: Global analysis[J]. J Climate, 1992, 5: 1281-1304.
[2]Chen T, Rossow W B, Zhang Y. Radiative effects of cloud-type variations[J]. J Climate, 2000, 13: 264-286.
[3]尚博. 利用Cloudsat对华北、江淮云垂直结构及降水云特征的研究[D]. 南京: 南京信息工程大学, 2011: 1-45.
[4]Wang J H, Rossow W B. Effect of cloud vertical structure on atmospheric circulation in the GISS GCM[J]. J Climate, 1998, 11: 3010-3029.
[5]Wang J H, Rossow W B, Zhang Y C. Cloud vertical structure and its variation from a 20-yr global rawinsonde dataset[J]. J Climate, 1999, 13: 3042-3056.
[6]欧建军. 利用探空数据分析云垂直结构的方法及其应用研究[D]. 南京: 南京信息工程大学, 2011: 1-21.
[7]赵增亮, 毛节泰, 魏强, 等. 西北地区春季云系的垂直结构特征飞机观测统计分析[J]. 气象, 2010, 36(5): 71-77.
[8]王维佳, 董晓波, 石立新, 等. 一次多层云系云物理垂直结构探测研究[J]. 高原气象, 2011, 30(5): 1368-1375.
[9]洪延超, 李宏宇. 一次锋面层状云云系结构、降水机制及人工增雨条件研究[J]. 高原气象, 2001, 20(5): 1308-1323.
[10]周毓荃, 蔡淼, 欧建军, 等. 云特征参数与降水相关性的研究[J]. 大气科学学报, 2011, 34(6): 641-652.
[11]蔡淼, 周毓荃, 朱彬. 一次对流云团合并的卫星等综合观测分析[J]. 大气科学学报, 2011, 34(2): 170-179.
[12]陈英英, 周毓荃, 毛节泰, 等. 利用FY-2C静止卫星资料反演云粒子有效半径的试验研究[J]. 气象, 2007, 33(4): 29-34.
[13]刘健. 利用卫星数据分析青藏高原云微物理特性[J].高原气象, 2013, 32(1): 38-45, doi: 10.7522/j.issn.1000-0534.2013.00005.
[14]叶培龙, 王天河, 尚可政, 等. 基于卫星资料的中国西部地区云垂直结构分析[J]. 高原气象, 2014, 33(4): 977-987, doi: 10.7522/j.issn.1000-0534.2013.00158.
[15]杨冰韵, 张华, 彭杰, 等. 用CloudSat卫星资料分析云微物理和光学性质的分布特征[J]. 高原气象, 2014, 33(4): 1105-1118, doi: 10.7522/j.issn.1000-0534.2013.00026.
[16]李积明, 黄建平, 衣育红, 等. 利用星载激光雷达资料研究东亚地区云垂直分布的统计特征[J]. 大气科学, 2009, 33(4): 698-707.
[17]王帅辉, 韩志刚, 姚志刚, 等. 基于Cloudsat资料的中国及周边地区云垂直结构统计分析[J]. 高原气象, 2011, 30(1): 38-52.
[18]王帅辉, 韩志刚, 姚志刚. 基于Cloudsat和ISCCP资料的中国及周边地区云量分布的对比分析[J]. 大气科学, 2010, 34(4): 767-779.
[19]王帅辉, 韩志刚, 姚志刚, 等. 基于Cloudsat资料的中国及周边地区各类云的宏观特征分析[J]. 气象学报, 2011, 69(5): 883-899.
[20]王胜杰, 何文英, 陈洪滨, 等. 利用Cloudsat资料分析青藏高原、高原南坡及南亚季风区云高度的统计特征量[J]. 高原气象, 2010, 29(1): 1-9.
[21]Luo Yali, Zhang Renhe, Wang H. Comparing occurrence and vertical structures of hydrometeors between eastern China and the Indian monsoon region using Cloudsat/CALIPSO data[J]. J Climate, 2008, 22: 1052-1064.
[22]周毓荃, 赵姝慧. Cloudsat卫星及其在天气和云观测分析中的应用[J]. 南京气象学院学报, 2008, 31(5): 603-614.
[23]赵姝慧, 周毓荃. 利用多种卫星研究台风“艾云尼”宏微观结构特征[J]. 高原气象, 2010, 29(5): 1254-1260.
[24]胡志晋. 积云形成暖雨的条件[J]. 气象学报, 1979, 37(3): 72-79.
[25]黄美元, 何珍珍, 沈志来. 暖心层积云中大云滴分布特征[J]. 气象学报, 1983, 41(3): 358-364.
[26]游景炎, 段英, 游来光. 云降水物理和人工增雨技术研究[M]. 北京: 气象出版社, 1994: 1-295.
[27]谢璞, 张蔷. 层状云宏微观物理结构分析与人工影响降水研究[M]. 北京: 气象出版社, 2005: 1-154.
[28]于翡. 环北京地区积层混合云降水个例的数值模拟研究[D]. 北京: 中国气象科学研究院, 2009: 1-6.
[29]刘贵华, 余兴, 贾玲, 等. 2009年陕西春季层状云增雨卫星观测分析[J]. 干旱区研究, 2011, 28(4): 699-704.
文章导航

/