论文

大连地区GPS反演大气可降水量的变化特征

  • 石小龙 ,
  • 尚伦宇 ,
  • 尹远渊 ,
  • 黄振 ,
  • 黄艇 ,
  • 程航 ,
  • 李鸿强
展开
  • 大连市气象局, 大连 116001;2. 中国科学院寒区旱区环境与工程研究所, 兰州 730000;3. 金州新区气象局, 金州 116600

收稿日期: 2014-01-24

  网络出版日期: 2014-12-28

基金资助

中国气象局气象关键技术集成与应用项目(CAMGJ2012M15)

Variation Characteristics of Precipitable Water Vapor Inversed by GPS in Dalian

  • SHI Xiaolong ,
  • SHANG Lunyu ,
  • YIN Yuanyuan ,
  • HUANG Zhen ,
  • HUANG Ting ,
  • CHENG Hang ,
  • LI Hongqiang
Expand
  • Dalian Meteorological Bureau, Dalian 116001, China;2. Cold and Arid Regions Environmental and Engineering Research Institute of Chinese Academy of Sciences, Lanzhou 730000, China;3. Jinzhou Meteorological Bureau, Dalian 116600, China

Received date: 2014-01-24

  Online published: 2014-12-28

摘要

利用GPS反演的大气可降水量(PWV)分析了2010-2012年大连地区水汽的时空变化特征, 结果表明, GPS/PWV资料能够反映大气中水汽的变化。大连地区PWV空间分布比较均匀; PWV最大的月份为7-8月, 月平均值为43 mm左右; PWV最小的月份为1月, 月平均值在4 mm以下。大连地区春、冬季PWV日平均变化幅度在0.5 mm以下, 夏、秋季PWV日平均变化幅度在1 mm以上; 夏、秋季PWV日平均变化呈单峰型, 春、冬季PWV日平均变化呈多峰型。主汛期(7-8月), 日平均PWV与气温有较好的负相关, 与相对湿度有较好的正相关; 06:00(北京时, 下同)-15:00, 气温逐渐升高, 水汽输送造成PWV的下降大于蒸发所造成PWV的上升, 大气水汽总量减小, 相对湿度减小; 15:00-次日06:00, 气温逐渐下降, 水汽输送造成PWV的下降小于蒸发造成PWV的上升, 大气水汽总量增加, 相对湿度增加。

本文引用格式

石小龙 , 尚伦宇 , 尹远渊 , 黄振 , 黄艇 , 程航 , 李鸿强 . 大连地区GPS反演大气可降水量的变化特征[J]. 高原气象, 2014 , 33(6) : 1648 -1653 . DOI: 10.7522/j.issn.1000-0534.2014.00080

Abstract

The temporal and spatial characteristics of vapor in Dalian by using the PWV inversed by GPS during 2010-2012 were analyzed. The results showed that the data of GPS/PWV can reflect the change of vapor in atmosphere. The spatial distribution of PWV was the evenly in Dalian area. The monthly mean PWV was maximum in July or August (43 mm), the minimum in January (4 mm). The range of daily variation of PWV in Dalian was less than 0.5 mm in spring and winter, but more than 1 mm in summer and autumn. Daily variation of PWV showed single peak type in summer and autumn, but multi-peak in the other seasons. In flood season (from July to August), daily variation of PWV was significant negatively correlated with temperature, but positively correlated with relative humidity. During 06:00(Beijing Time, hereafter the same) to 15:00, temperature was increased gradually, while the atmospheric water vapor and relative humidity were decrease, and the decreased of PWV caused by water vapor transport was higher than the increased of PWV caused by evaporation. During 15:00 to 06:00 in next day, the result is opposite.

参考文献

[1]Askne J, Nordius H. Estimation of tropospheric delay for microwaves from surface weather data[J]. Radio Sci, 1987, 22, 3: 379-386.
[2]Baker H C, Dodson A H, Penna N T, et al. Groud-based GPS water vapor estimation: Potential for meteorological forecasting[J]. Journal of Atmospheric and Solar Terrestrial Physics, 2001, 63: 1305-1314.
[3]Bevis M, Businger S, Herring T A, et al. GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System[J]. J Geophys Res, 1992, 97: 15787-15801.
[4]Rocken C, VanHove T, Johmson J, et al. GPS/STORM-GPS sensing of atmospheric water vapor formeteorology[J]. J Atmos Ocean Technol, 1995, 12: 468-478.
[5]Duan J, Bevis M, Fang P, et al. GPS meteorology: Direct estimation of the absolute value of precipitable water[J]. J Appl Meteor, 1996, 35: 830-838.
[6]曹云昌, 方宗义, 夏青. 地空基GPS探测应用研究进展[J]. 南京气象学院学报, 2004, 27(4): 565-572.
[7]李延兴, 徐宝祥, 胡新康, 等. 用地基GPS观测站遥测大气含水量和可降雨量的理论基础与实验结果[J]. 中国科学, 2000, 30(增刊1): 107-110.
[8]梁丰, 李成才, 王迎春, 等. 应用区域地基全球定位系统观测分析北京地区大气总水汽量[J]. 大气科学, 2003, 27(2): 236-244.
[9]杨光林, 刘晶淼, 毛节泰. 西藏地区水汽GPS遥感分析[J]. 气象科技, 2002, 30(5): 266-272.
[10]宾振, 吴瑶, 邱璐, 等. 江西地基GPS遥感大气可降水量变化特征及精度[J]. 高原气象, 2013, 32(5): 1503-1509, doi: 10.7522/j.issn.1000-0534.2012.00140.
[11]姚建群, 丁金才, 王坚捍, 等. 用GPS可降水量资料对一次大—暴雨过程的分析[J]. 气象, 2005, 31(4): 48-52.
[12]曹云昌, 方宗义, 夏青. GPS遥感的大气可降水量与局地降水关系的初步分析[J]. 应用气象学报, 2005, 16(1): 54-59.
[13]杨莲梅, 王世杰, 史玉光, 等. 乌鲁木齐夏季降水强降水过程GPS-PWV的演变特征[J]. 高原气象, 2012, 31(5): 1348-1355.
[14]杨露华, 叶其欣, 邬锐, 等. 基于GPS/PWV资料的上海地区2004年一次夏末暴雨的水汽输送分析[J]. 气象科学, 2006, 25(5): 502-508.
[15]Zhai P, Eskridge R E. Atmospheric water vapor over China[J]. J Climate, 1997, 10: 2643-2652.
[16]Herring T A, King R W, McClusky S C. GAMIT reference manual(10.35)[Z]. Department of Earth, Atmospheric and Planetary Sciences, Massachussetts Institute of Technology, 2009: 183.
[17]UNAVCO TEQC tutorial. http://facility.unavco.org/software/teqc/tutorial.html, 2010.
[18]丁金才, 叶其欣, 黄炎, 等. 2002年汛期长江三角洲地区GPS观测大气可降水量的统计分析[M]. 大气科学研究与应用, 北京: 气象出版社, 2003: 26-34.
[19]李燕, 石小龙, 王树雄, 等. 2009年大连春季强对流雨雪天气过程分析[J]. 高原气象, 2011, 30(4): 961-968.
[20]梁军, 张胜军, 王树雄, 等. 大连地区一次区域暴雪的特征分析和数值模拟[J]. 高原气象, 2010, 29(3): 744-754.
[21]梁军, 张胜军, 石小龙, 等. 2010年8月810日辽东半岛暴雨过程的中尺度特征分析[J]. 高原气象, 2012, 31(5): 1320-1331.
[22]梁军, 李英, 隋洪起, 等. 两次大连春季暴雨的环流特征和诊断分析[J]. 高原气象, 2011, 30(5): 1243-1254.
[23]王玲玲, 王谦谦, 徐晓波, 等. 大连地区主汛期降水异常的气候特征分析[J]. 大连海事大学学报, 2005, 31(1): 105-108.
[24]Wu P, Kimura F, Sasaki T, et al. Diurnal variation of GPS-derived precipitable water over the Tibetan Plateau during summer[C]. International Workshop on GPS Meteorology, 2003: 3-28.
文章导航

/