论文

从水汽角度对青藏高原东南侧高空探测布局的分析

  • 段玮 ,
  • 段旭 ,
  • 徐开 ,
  • 杨家康
展开
  • 云南省气象科学研究所, 昆明 650034

收稿日期: 2013-03-22

  网络出版日期: 2015-04-28

基金资助

公益性行业(气象)专项(GYHY201006053); 国家自然科学基金项目(41205067); 云南省应用基础研究专项(2010CD138); 云南省科技惠民计划(2014RA002)

Research about Radiosonde Stations Increase in Southeast Side of Qinghai-Xizang Plateau Based on Its Water Vapor Characteristics

  • DUAN Wei ,
  • DUAN Xu ,
  • YANG Jiakang ,
  • XU Kai
Expand
  • Yunnan Institute of Meteorology, Kunming 650034, China

Received date: 2013-03-22

  Online published: 2015-04-28

摘要

水汽是大气探测最关心的要素之一。从青藏高原东南侧出发, 以NCEP再分析资料为基础, 利用水汽气候诊断方法结合区域地形研究了该区域的水汽分布、输送与辐合辐散特征, 并讨论了探空站布局。水汽输送分布与大气可降水季节差异均表明, 青藏高原东南侧是夏、秋季东亚季风和南亚季风影响的季风过渡区, 也是东亚地区最主要的水汽通道之一, 尤其在秋、冬、春季此通道的水汽输送更为关键。青藏高原东南侧的大气可降水量比西南侧明显要大, 这与低纬高原和青藏高原南侧南凸弧形构成的地形组合有着密切关系。青藏高原东南侧地形对水汽辐合、辐散的影响具有复杂性和特殊性, 既有经向、纬向差异也有高低层差异。复杂的水汽分布及输送特征需要加强水汽探测。通过对水汽探测关键区的量化研究表明, 滇西北—藏东南—缅北地区、滇东—黔西地区以及滇西南地区是观测需求较为显著的区域。

本文引用格式

段玮 , 段旭 , 徐开 , 杨家康 . 从水汽角度对青藏高原东南侧高空探测布局的分析[J]. 高原气象, 2015 , 34(2) : 307 -317 . DOI: 10.7522/j.issn.1000-0534.2014.00024

Abstract

Water vapor is one of the most concerned elements of atmospheric probing. Using NCEP reanalysis data and considering the terrain, the water vapor characteristics (e.g. distribution of water vapor, transport of water vapor, its convergence and divergence) in one sub-region of the Qinghai-Xizang Plateau(QXP), the southeast side of the QXP, are analyzed by the climate diagnostic methods. Based on its water vapor characteristics, the quantitative research of radiosonde stations Increase is developed. The results show that the water vapor transport and seasonal differences of atmospheric precipitable water show that the QXP in the southeast is the interaction region of East Asian monsoon and South Asian monsoon. The southeast side of the QXP is the most important water vapor channel in northeast hemisphere, especially in autumn, winter and spring. The atmospheric precipitable water in the southeast side of the QXP is significantly larger than the southwest side of QXP, the reason are directly related to the combination the southward convex curved terrain of the QXP and low latitude plateau terrain. For moisture convergence and divergence, terrain is a complex and special role in the southeast side of the QXP. Its role is not only exist level differences, but also exist longitudinal and latitudinal differences. Base on quantitative research about the key area of water vapor detection, the urgent area to increase radiosonde stations include northwestern of Yunnan-southeastern of Tibet-northern of Burma, eastern of Yunnan-western of Guizhou (near 25°N) and southwest of Yunnan.

参考文献

[1]谢义炳, 戴武杰. 中国东部地区夏季水汽输送个例计算[J]. 气象学报, 1959, 30(2): 171-185.
[2]Zhou Tianjun, Yu Rucong. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China[J]. J Geophys Res, 2005, 110(D08104): 1-10.
[3]张洁, 周天军, 宇如聪, 等. 中国春季典型降水异常及相联系的大气水汽输送[J]. 大气科学, 2009, 33(1): 121-134.
[4]高国栋, 翟盘茂. 长江流域旱涝典型年大气水汽输送[J]. 水科学进展, 1993, 4(1): 10-16.
[5]施小英, 徐祥德, 王浩, 等. 长江中下游地区旱涝异常的水汽输送结构特征及其变化趋势[J]. 水利学报, 2008, 39(5): 596-603.
[6]丁一汇, 胡国权. 1998年中国大洪水时期的水汽收支研究[J]. 气象学报, 2003, 61(2): 129-145.
[7]乔云亭, 罗会邦, 简茂球. 亚澳季风区水汽收支时空分布特征[J]. 热带气象学报, 2002, 18(3): 203-210.
[8]张雪梅, 江志红, 刘晓东, 等. 东亚地区夏季水汽输送特征[J]. 热带气象学报, 2009, 25(6): 733-739.
[9]周长艳, 何金海, 李薇, 等. 夏季东亚地区水汽输送的气候特征[J]. 南京气象学院学报, 2005, 28(1): 18-27.
[10]黄荣辉, 陈际龙. 我国东、西部夏季水汽输送特征及其差异[J]. 大气科学, 2010, 34(6): 1035-1045.
[11]Zhang Renhe. Relations of water vapor transport from Indian monsoon with that over East Asia and the summer rainfall in China[J]. Adv Atmos Sci, 2001, 18(5): 1005-1017.
[12]黄荣辉, 张振洲, 黄刚, 等. 夏季东亚季风区水汽输送特征及其与南亚季风区水汽输送的差别[J]. 大气科学, 1998, 22(4): 76-85.
[13]田红, 郭品文, 陆维松. 夏季水汽输送特征及其与中国降水异常的关系[J]. 南京气象学院学报, 2002, 25(4): 496-502.
[14]谢安, 毛江玉, 宋焱云, 等. 长江中下游地区水汽输送的气候特征[J]. 应用气象学报, 2002, 13(1): 67-77.
[15]徐祥德, 陈联寿, 王秀荣, 等. 长江流域梅雨带水汽输送源-汇结构[J]. 科学通报, 2003, 48(21): 2288-2294.
[16]张楠, 王霄, 程家合. 华中地区空中水汽资源的输送和收支研究[J]. 气象与环境科学, 2011, 34(2): 25-30.
[17]任宏利, 张培群, 李维京, 等. 西北区东部春季降水及其水汽输送的低频振荡特征[J]. 高原气象, 2006, 25(2): 285-292.
[18]蒋兴文, 李跃清, 李春, 等. 四川盆地夏季水汽输送特征及其对旱涝的影响[J]. 高原气象, 2007, 26(3): 476-484.
[19]张利平, 夏军, 林朝晖, 等. 海河流域大气水资源变化与输送特征研究[J]. 水利学报, 2008, 39(2): 206-217.
[20]魏凤英, 张婷. 淮河流域夏季降水的振荡特征及其与气候背景的联系[J]. 中国科学: 地球科学, 2009, 39(10): 1360-1374.
[21]李江林, 李照荣, 杨建才, 等. 近10年夏季西北地区水汽空间分布和时间变化分析[J]. 高原气象, 2012, 31(6): 1574-1581.
[22]卓嘎, 边巴次仁, 杨秀海. 近30年西藏地区大气可降水量的时空变化特征[J]. 高原气象, 2013, 32(1): 23-30, doi: 10.7522/j.issn.1000-0534.2013.00003.
[23]吴国雄. 我国青藏高原气候动力学研究的近期进展[J]. 第四纪研究, 2004, 24(1): 1-9.
[24]徐祥德, 陈联寿. 青藏高原大气科学试验研究进展[J]. 应用气象学报, 2006, 17(6): 756-772.
[25]Wu Gouxiong, Liu Yimin, He Biand, et al. Thermal controls on the Asian summer monsoon[J]. Scientific Reports, 2012, 2, 404, doi: 10.1038/srep00404.
[26]郁淑华, 高文良, 彭骏. 近13年青藏高原切变线活动及其对中国降水影响的若干统计[J]. 高原气象, 2013, 32(6): 1527-1537, doi: 10.7522/j.issn.1000-0534.2012.00149.
[27]过霁冰, 徐祥德, 施晓晖, 等. 青藏高原冬季积雪关键区视热源特征与中国西南春旱的联系[J]. 高原气象, 2012, 31(4): 900-909.
[28]张少波, 陈玉春, 吕世华, 等 .青藏高原植被变化对中国东部夏季降水影响的模拟研究[J]. 高原气象, 2013, 32(5): 1236-1245, doi: 10.7522/j.issn.1000-0534.2012.00119.
[29]蔡英, 钱正安, 吴统文. 青藏高原及周围地区大气可降水量的分布、变化与各地多变的降水气候[J]. 高原气象, 2004, 23(1): 1-10.
[30]周长艳, 蒋兴文, 李跃清, 等. 高原东部及邻近地区空中水汽资源的气候变化特征[J]. 高原气象, 2009, 28(1): 55-63.
[31]苗秋菊, 徐祥德, 施小英. 青藏高原周边异常多雨中心及其水汽输送通道[J]. 气象, 2004, 30(12): 44-47.
[32]徐祥德, 陶诗言, 王继志, 等. 青藏高原—季风水汽输送"大三角扇型"影响域特征与中国区域旱涝异常的关系[J]. 气象学报, 2002, 63(3): 257-266, 385.
[33]Wang Bin. The Asian Monsoon[M]. New York: Springer-Praxis books in Environmental Sciences, 2006: 67-87.
[34]钱维宏. 全球气候系统[M]. 北京: 气象出版社, 2009: 232-283.
[35]汤绪, 孙国武, 钱维宏. 亚洲夏季风北边缘研究[M]. 北京: 气象出版社, 2007: 25-47.
[36]Li Jianping, Zeng Qingcun. A new monsoon index and the geographical distribution of the global monsoons[J]. Adv Atmos Sci, 2003, 20(2): 299-302.
[37]丁一汇. 高等天气学 [M]. 第2版. 北京: 气象出版社, 2005: 212-249.
[38]Tao Shiyan, Chen Longxun. A review of recent research on the East Asia summer monsoon in China[M]//Chang C P, Krishnamurti T N, eds. Monsoon Meteorology. London: Oxford University Press, 1987: 60-92.
[39]何金海, 祁莉, 韦晋, 等. 关于东亚副热带季风和热带季风的再认识[J]. 大气科学, 2007, 31(6): 1257-1265.
[40]段旭, 段玮. 孟加拉湾风暴对高原地区降水的影响[J]. 高原气象, 2015, 34(1): 1-10, doi: 10.7522/j.issn.1000-0534.2014.00001.
[41]段旭, 陶云, 许美玲, 等. 西风带南支槽对云南天气的影响[J]. 高原气象, 2012, 31(4): 1059-1065.
[42]Zhang Renhe, Koike Toshio, Xu Xiangde. A China-Japan Cooperative JICA Atmospheric Observing Network over the Tibetan Plateau (JICA/Tibet Project): An overviews[J]. J Meteor Soc Japan, 2012, 90(C): 1-16.
[43]万日金, 吴国雄. 江南春雨的时空分布[J]. 气象学报, 2008, 66(3): 311-319.
[44]鲁亚斌, 解明恩, 范菠, 等. 春季高原东南角多雨中心的气候特征及水汽输送分析[J]. 高原气象, 2008, 27(6): 1189-1194.
[45]琚建华, 罗汇邦. 东亚夏季风建立过程中大气热源结构及其与热带环流的关系[C]. 气象科学技术集刊(10), 北京: 气象出版社, 1987: 103-114.
[46]赵荻, 姚平, 杨若文. 亚洲季风区平均雨季起始期的时空分布特征[J]. 云南大学学报: 自然科学版, 2006, 28(4): 333-336.
[47]肖潺, 宇如聪, 原韦华, 等. 横断山脉中西部降水的季节演变特征[J]. 气象学报, 2013, 71(4): 643-651.
[48]段旭, 段玮, 陶云, 等. 云南冰冻灾害研究与电线覆冰区划[M]. 北京: 气象出版社, 2010: 8-14.
文章导航

/