论文

青藏高原南缘关键区夏季水汽输送特征及其与高原降水的关系

  • 解承莹 ,
  • 李敏姣 ,
  • 张雪芹 ,
  • 关学锋
展开
  • 中国科学院地理科学与资源研究所/中国科学院陆地表层格局与模拟重点实验室, 北京 100101;2. 中国科学院大学, 北京 100049;3. 天津市环境保护科学研究院, 天津 300191

收稿日期: 2013-08-23

  网络出版日期: 2015-04-28

基金资助

国家自然科学基金项目(41171062, 41471064)

Moisture Transport Features in Summer and Its Rainfall Effects over Key Region in Southern Margin of Qinghai-Xizang Plateau

  • XIE Chengying ,
  • LI Minjiao ,
  • ZHANG Xueqin ,
  • GUAN Xuefeng
Expand
  • Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Tianjin Academy of Environmental Sciences, Tianjin 300191, China

Received date: 2013-08-23

  Online published: 2015-04-28

摘要

青藏高原南缘水汽输送和聚散过程决定着高原及其邻域的降水分布特征, 在提出"青藏高原南缘水汽输送关键区"(简称南缘关键区)概念的基础上, 利用NCEP/NCAR再分析资料分析了1979-2010年南缘关键区夏季水汽输送过程与收支变化, 并根据台站降水量观测资料探讨了南缘关键区各边界水汽收支与高原夏季降水分布的关系。结果表明, 孟加拉湾偏南风水汽流进入南缘关键区后, 在印度热低压与青藏高原大地形制约下, 形成了3条进入高原的水汽输送通道。这使得南缘关键区整体为多年平均水汽辐散区, 除南边界外, 其余均为水汽输出边界。南缘关键区各边界水汽收支年内与年际变化明显, 且东、西边界水汽输出强度变化特征相反。而各边界水汽收支与印度热低压和南海夏季风活动关系密切, 输出边界的水汽支出异常则直接影响着青藏高原乃至周边季风区的降水异常分布以及极端旱涝事件的发生、发展。此外, NCEP/NCAR与JRA-25再分析资料之间的对比验证表明, 这两种再分析资料在青藏高原南缘水汽输送过程的定性研究中是可靠的。

本文引用格式

解承莹 , 李敏姣 , 张雪芹 , 关学锋 . 青藏高原南缘关键区夏季水汽输送特征及其与高原降水的关系[J]. 高原气象, 2015 , 34(2) : 327 -337 . DOI: 10.7522/j.issn.1000-0534.2014.00034

Abstract

Regional water vapor convergence and divergence over the southern margin of the Qinghai-Xizang Plateau (QXP) can be regarded as a good factor for the formation of rainfall climate and extreme weather in the TP and its surroundings. In view of the key region in southern margin of the QXP (the key region for short), summer moisture transport and budget over the key region are analyzed based on the NCEP/NCAR reanalysis data from 1979 to 2010, combined with rainfall station data as well to explore its effects on the rainfall characteristics in the QXP and its surroundings. The main conclusions are summarized as follows. Influenced by the Indian low and the terrain of the QXP, three water vapor transport channels were transformed in the key region from the Bay of Bengal moisture flow, and those led to water vapor divergence over the key region where the southern boundary was the only input one. Meanwhile, different boundaries showed different monthly and interannual variations, especially for the contrary trend of the moisture budget intensity between the western and the eastern boundaries. The budget of input and output boundaries were affected by the activities of the Indian low and the South Asian monsoon, and the output boundaries moisture budget was directly connected with abnormal distribution of rainfall and the development of extreme drought and flood events in the QXP and even the monsoon region surroundings. In addition, the reliability of NCEP/NCAR and JRA-25 reanalysis data in qualitative research over the south margin of the QXP was confirmed by comparison of these tow datasets.

参考文献

[1]Trenberth K E. Atmospheric moisture residence times and cycling: implications for rainfall rates and climate change[J]. Climate Change, 1998, 39(4): 667-649.
[2]Starr V P, Peixoto J P. On the global balance of water vapor and the hydrology of deserts[J]. Tellus, 1958, 10(2): 189-194.
[3]Tao S Y, Chen L X. The East Asian summer monsoon[C]. Tokyo: Proceedings of international conference on monsoon in the Far East, 1985: 3-5.
[4]吴国雄, 张永生. 青藏高原的热力和机械强迫作用以及亚洲季风的爆发Ⅰ: 爆发地点[J]. 大气科学, 1998, 22(6): 825-838.
[5]吴国雄, 张永生. 青藏高原的热力和机械强迫作用以及亚洲季风的爆发Ⅱ: 爆发时间[J]. 大气科学, 1999, 23(1): 51-61.
[6]Duan A M, Wu G X. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J]. Climate Dynamics, 2005, 24: 793-807.
[7]王同美, 吴国雄, 万日金. 青藏高原的热力和动力作用对亚洲季风区环流的影响[J]. 高原气象, 2008, 27(1): 1-9.
[8]王学佳, 杨梅学, 万国宁. 近60年青藏高原地区地面感热通量的时空演变特征[J]. 高原气象, 2013, 32(6): 1557-1567, doi: 10.7522/j.issn.1000-0534.2012.00151.
[9]Wu G X, Liu Y M, He B, et al. Thermal controls on the Asian summer monsoon[J]. Scientific Reports, 2012, doi: 10.1038/srep00404.
[10]卓嘎, 边巴次仁, 杨秀海, 等. 近30年西藏地区大气可降水量的时空变化特征[J]. 高原气象, 2013, 32(1): 23-30, doi: 10.7522/j.issn.1000-0534.2013.00003.
[11]周晓霞, 丁一汇, 王盘兴. 夏季亚洲季风区的水汽输送及其对中国降水的影响[J]. 气象学报, 2008, 66(1): 59-70.
[12]杨莲梅, 肖开提·多莱特, 张庆云. 夏季新疆降水异常与印度降水的关系[J]. 高原气象, 2009, 28(3): 564-572.
[13]黄均福, 沈如金. 夏季风时期青藏高原地区水汽来源及水汽收支分析[C]. 青藏高原气象学研究文集. 北京: 气象出版社, 2004.
[14]徐祥德, 陈联寿. 青藏高原大气科学试验研究进展[J]. 应用气象学报, 2006, 17(6): 756-772.
[15]王霄, 巩远发, 岑思弦. 夏半年青藏高原"湿地"的水汽分布及水汽输送特征[J]. 地理学报, 2009, 64(5): 601-608.
[16]苗秋菊, 徐祥德, 张胜军. 长江流域水汽收支与高原水汽输送分量"转换"特征[J]. 气象学报, 2005, 63(1): 93-99.
[17]徐祥德, 陈联寿, 王秀荣, 等. 长江流域梅雨带水汽输送源-汇结构[J]. 科学通报, 2003, 48(21): 2288-2294.
[18]施小英, 徐祥德, 苗秋菊, 等. 东亚季风的动力结构与关键区整层水汽收支总体效应相关结构特征[C]. 中国气象学会2006年年会"灾害性天气系统的活动及其预报技术", 2006.
[19]施小英, 施晓晖. 夏季青藏高原东南部水汽收支气候特征及其影响[J]. 应用气象学报, 2008, 19(1): 41-46.
[20]徐祥德, 陶诗言, 王继志, 等. 青藏高原-季风水汽输送"大三角扇型"影响域特征与中国区域旱涝异常的关系[J]. 气象学报, 2002, 60(3): 257-266.
[21]冯蕾, 魏凤英. 青藏高原夏季降水的区域特征及其与周边地区水汽条件的配置[J]. 高原气象, 2008, 27(3): 491-499.
[22]江吉喜, 范梅珠. 青藏高原夏季TBB场与水汽分布关系的初步研究[J]. 高原气象, 2002, 21(1): 20-24.
[23]许健民, 郑新江, 徐欢. GMS-5水汽图像所揭示的青藏高原地区对流层上部水汽分布特征[J]. 应用气象学报, 1996, 7(2): 246-251.
[24]周长艳, 蒋兴文, 李跃清, 等. 高原东部及邻近区域空中水汽资源的气候变化特征[J]. 高原气象, 2009, 28(1): 55-63.
[25]Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bull Amer Meteor Soc, 1996, 77(3): 437-471.
[26]Kistler R, Kalnay E, Collins W, et al. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation[J]. Bull Amer Meteor Soc, 2001, 82(2): 247-268.
[27]Kazutoshi O, Junichi T, Hiroshi K, et al. The JRA-25 reanalysis[J]. J Meteor Soc Japan, 2007, 83(3): 369-432.
[28]魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 2007: 36.
[29]王绍武, 龚道溢, 陈振华. 近百年来中国的严重气候灾害[J]. 应用气象学报, 1999, 10(增刊1): 43-53.
[30]李晓燕, 翟盘茂. ENSO事件指数与指标研究[J]. 气象学报, 2000, 58(1): 102-109.
[31]洪芳玲, 李丽平, 王盘兴, 等. 夏季南亚高原和印度低压环流指数及其与大气热源的关系[J]. 高原气象, 2012, 31(5): 1234-1242.
[32]靳莉君, 赵平. 夏季南海季风对长江中下游季风降水影响的观测分析和数值模拟[J]. 气象学报, 2012, 70(4): 670-680.
[33]Duan A M, Li F, Wang M R, et al. Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon[J]. J Climate, 2011, 24: 5671-5682.
[34]Zhou W, Chan J C L. ENSO and the South China Sea summer monsoon onset [J]. Int J Climatol, 2007, 27: 157-167.
[35]于乐江, 胡敦欣. 青藏高原春季积雪在南海夏季风爆发过程中的作用[J]. 地球物理学报, 2008, 51(6): 1682-1694.
[36]陈烈庭. 青藏高原异常雪盖和ENSO在1998年长江流域洪涝中的作用[J]. 大气科学, 2001, 25(2): 184-192.
[37]宋燕, 张青, 李智才, 等. 青藏高原冬季积雪年代际变化及对中国夏季降水的影响[J]. 高原气象, 2011, 30(4): 843-851.
[38]张勤, 丁一汇, 周琴芳. 1991-1994年El Nio的异常特征的诊断研究[J]. 气象学报, 1998, 56(5): 573-583.
[39]龙宝森. 1994/1995 ENSO事件及1996年热带太平洋和大气状况的诊断与预测[J]. 黄渤海海洋, 1997, 15(2): 1-6.
[40]周曾奎. 1994年江淮地区持续高温干旱的环流特征[J]. 气象, 1996, 22(7): 40-42.
[41]陶诗言, 张庆云, 张顺利. 1998年长江流域洪涝灾害的气候背景和大尺度环流条件[J]. 气候与环境研究, 1998, 3(4): 290-299.
[42]周顺武, 张人禾. 青藏高原地区上空NCEP/NCAR再分析温度和位势高度资料与观测资料的比较分析[J]. 气候与环境研究, 2009, 14(2): 284-292.
[43]孙玉婷, 高庆九, 闵锦忠. 再分析温度资料与西藏地区冬、夏季观测气温的比较[J]. 高原气象, 2013, 32(4): 909-920, doi: 10.7522/j.issn.1000-0534.2012.00087.
[44]李瑞青, 吕世华, 韩博, 等. 青藏高原东部三种再分析资料与地面气温观测资料的对比分析[J]. 高原气象, 2012, 31(6): 1488-1502.
[45]占瑞芬, 李建平. 青藏高原和热带西北太平洋大气热源在亚洲地区夏季平流层-对流层水汽交换的年代际变化中的作用[J]. 中国科学(D辑), 2008, 38(8): 1028-1040.
文章导航

/