论文

滇黔准静止锋诱发贵州春季暴雨的锋生机制分析

  • 杜正静 ,
  • 何玉龙 ,
  • 熊方 ,
  • 邓晓红 ,
  • 石开银 ,
  • 彭倩
展开
  • 贵州省气象服务中心, 贵阳 550002;2. 贵州省山地气候与资源重点实验室, 贵阳 550002;3. 黔南州气象局, 都匀 555800;4. 贵州省气象局, 贵阳 550002;5. 贵阳市气象局, 贵阳 550002

收稿日期: 2013-05-20

  网络出版日期: 2015-04-28

基金资助

贵州省科学技术基金(20122227); 贵州省气象局气象科技开放研究基金(KF200816, KF200904); 贵州省重大科技专项(20116003)

Analysis on the Frontogenesis Mechanism of Dian-Qian Quasi-stationary Front Inducing Spring Rainstorm in Guizhou Province

  • DU Zhengjing ,
  • HE Yulong ,
  • XIONG Fang ,
  • DENG Xiaohong ,
  • SHI Kaiyin ,
  • PENG Qian
Expand
  • Guizhou Province Meteorological Service Center, Guiyang 550002, China;2. Guizhou Key Laboratory of Mountounious Climate and Resources, Guiyang 550002, China;3. Meteorological Bereau of South Guizhou, Duyun 555800, China;4. Guizhou Meteorological Bureau, Guiyang 550002, China;5. Guiyang Meteorological Bureau, Guiyang 550002, China

Received date: 2013-05-20

  Online published: 2015-04-28

摘要

利用卫星云图、常规地面观测资料和逐6 h的1°×1°NCEP再分析资料, 对2003-2006年春季滇黔准静止锋背景下, 出现的5次贵州暴雨天气过程进行了诊断分析和总结。结果表明: 在准静止锋背景下, 贵州春季暴雨是由高低空急流、高空槽、冷空气与准静止锋的共同作用产生的。低空急流将大量的水汽从孟加拉湾和北部湾输送到贵州, 不断积累对流有效位能; 高空急流的加速增强了"高层辐散、低层辐合"的大尺度上升运动, 并通过急流下侧的正环流圈带动冷空气南下, 使得准静止锋活跃锋生, 是暴雨天气过程的触发机制。锋生现象分析表明, 高空急流加速导致对流层中高层极锋锋区内锋生和对流层中层正环流圈的形成, 加强了准静止锋附近的水平变形和垂直运动, 进而促使锋生加强。水平变形和垂直运动对暴雨的产生也有直接影响: 水平变形项范围越大则降雨强度越强, 与垂直运动相关的倾斜项移动与在准静止锋附近生成的强对流云团的移动方向一致。准静止锋与贵州春季的暴雨过程关系密切, 暴雨落区集中分布在准静止锋南侧1个纬距带内。高空急流加速度、冷锋附近的水汽辐合强度以及对流有效位能的高能舌区范围对暴雨范围和强度有指示作用。基于以上锋生机制, 提炼了滇黔准静止锋诱发贵州春季暴雨的物理模型。

本文引用格式

杜正静 , 何玉龙 , 熊方 , 邓晓红 , 石开银 , 彭倩 . 滇黔准静止锋诱发贵州春季暴雨的锋生机制分析[J]. 高原气象, 2015 , 34(2) : 357 -367 . DOI: 10.7522/j.issn.1000-0534.2013.00176

Abstract

Using satellite images, observational data and the 6-hour-inteval reanalysis data with 1°×1° resolution from NCEP, five spring rainstorm processes in Guizhou Province under the background of Dian-Qian quasi-stationary front from 2003 to 2006 are analysed. The results show: In the setting of quasi-stationary front, the spring rainstorm in Guizhou Province is impacted together with the upper and low jet stream, upper trough, cold air and the quasi-stationary front. The rich water vapor is transported from the Bay of Bengal and Beibu Gulf to Guizhou province by low level jet stream, and the convective available potential energy is accumulated continuously. The acceleration of high jet stream strengthens the large-scale ascending motion with divergence in high level and convergence in low level, and drives the cold air southward via the positive circulation below the jet stream, then makes the quasi-stationary front active and frontogenesis, which is the trigger mechanism of the rainstorm processes. The frontogenesis phenomenon shows that the acceleration of high level jet stream results in the frontogenesis in the polar front in the mid-upper troposphere and the formation of the positive circulation in the middle troposphere. The latter strengthens the horizontal deformation and vertical motion and then enhances the frontogenesis. The horizontal deformation and vertical motion impact the rainstorm directly: The range of the horizontal deformation is in proportion to the rainfall intensity, and the convective cloud generating near the quasi-stationary moves along the direction of the inclined item related to vertical motion. Quasi-stationary front is close to spring rainstorm in Guizhou province. The heavy rainfall area is distributed mainly southward one latitude zone from the quasi-stationary front. The acceleration of high jet stream, the intensity of the moisture convergence around the cold front and the region of high-energy tongue have an indicative function to the extent and intensity of heavy rainfall. Based on above frontogenesis mechanism, a physical model about spring rainstorm in Guizhou province induced by the quasi-stationary front is epurated.

参考文献

[1]王曼, 段旭, 李华宏, 等. 地形对昆明准静止锋影响的数值模拟研究[J]. 气象, 2009, 35(5): 77-83.
[2]段旭, 李英, 孙晓东. 昆明准静止锋结构[J]. 高原气象, 2002, 21(2): 205-209.
[3]杜小玲, 蓝伟. 两次滇黔准静止锋锋区结构的对比分析[J]. 高原气象, 2010, 29(5): 1183-1195.
[4]钱维宏, 符娇兰. 2008年初江南冻雨过程的湿大气锋生[J]. 中国科学: 地球科学, 2009, 39(6): 787-798.
[5]李登文, 乔琪, 魏涛. 2008年初我国南方冻雨雪天气环流及垂直结构分析[J]. 高原气象, 2009, 28(5): 1140-1148.
[6]杨贵名, 毛冬艳, 孔期. "低温雨雪冰冻"天气过程锋区特征分析[J]. 气象学报, 2009, 67(4): 652-665.
[7]寿绍文, 王祖锋. 1971年7月上旬贵州地区暴雨过程物理机制的诊断研究[J]. 气象科学, 1998, 18(3): 231-238.
[8]杨洋, 俞佚名. 一次西南静止锋的准地转锋生函数分析[J]. 高原气象, 1995, 14(3): 365-372.
[9]井喜, 陈见, 胡春娟, 等. 广西和贵州MCC暴雨过程综合分析[J]. 高原气象, 2009, 28(2): 335-351.
[10]Hoskins B J, Neto E C, Cho H R. The formation of multiple fronts[J]. Quart J Roy Meteor Soc, 1984, 110: 881-896.
[11]Thorpe A J, Emanuel K A. Frontogenesis in the Presence of Small Stability to Slantwise Convection[J]. Atmos Sci, 1985, 42: 1809-1824.
[12]王兴宝. 锋生过程对扰动发展的影响[J]. 大气科学, 1997, 21(4): 472-484.
[13]王兴宝, 伍荣生. 变形场锋生条件下斜压锋区上对称波包的发展[J]. 气象学报, 2000, 58(4): 403-417.
[14]高守亭, 陶诗言. 高空急流加速与低层锋生[J]. 大气科学, 1991, 15(2): 11-22.
[15]姚秀萍, 于玉斌, 赵兵科. 梅雨锋云系的结构特征及其成因分析[J]. 高原气象, 2005, 24(6): 1002-1011.
[16]何斌, 何锋, 范晓红, 等. 一次长江中下游梅雨锋暴雨过程的诊断分析[J]. 高原气象, 2013, 32(4): 1074-1083, doi: 10.7522/j.issn.1000-0534.2012.00101.
[17]倪允琪, 周秀骥. 中国长江中下游梅雨锋暴雨形成机理以及监测与预测理论和方法研究[J]. 气象学报, 2004, 62(5): 647-662.
[18]张建海, 曹艳艳, 陈柯辰. 2011年浙江梅汛期前后旱涝急转形势及梅雨锋结构特征分析[J]. 高原气象, 2013, 32(1): 221-233, doi: 10.7522/j.issn.1000-0534.2013.00022.
[19]赵玉春, 许小峰, 崔春光.中尺度地形对梅雨锋暴雨影响的个例研究[J].高原气象, 2012, 31(5): 1268-1282.
[20]罗红磊, 陈海山, 林宗桂, 等. 一条弱静止锋上对流系统发生过程的中尺度特征[J]. 热带气象学报, 2013, 29(1): 106-114.
[21]杜正静, 丁治英, 张书余. 2001年1月滇黔准静止锋在演变过程中的结构及大气环流特征分析[J]. 热带气象学报, 2007, 23(3): 284-292.
[22]陶祖钰. 基础理论与预报实践[J]. 气象, 2011, 37(2): 129-135.
文章导航

/