利用NCEP FNL资料、FY-2E 云顶亮温、常规观测及加密自动站降水量等资料, 以及高分辨率中尺度模式WRF V3.3的模拟结果, 结合对流涡度矢量方程对2011年6月一次江淮梅雨锋暴雨过程进行了诊断分析。结果表明, 模拟结果再现了该次暴雨过程的降水特征, 该过程主要受地面低压及梅雨锋锋面系统的控制和影响, 其中6月14-15日为所选暴雨个例最旺盛的阶段, 且该时段伴随梅雨锋上中尺度对流系统的移动发展和梅雨锋锋生。对流涡度矢量及其垂直分量的倾向方程的诊断分析表明, 对流涡度矢量垂直分量的局地变化主要受非绝热加热项的影响; 而非绝热加热与次级环流和梅雨锋锋生的关系说明中尺度对流活动与梅雨锋锋生存在类CISK机制的反馈关系。因此, 对流涡度矢量, 特别是其垂直分量可以用来诊断和揭示伴随非绝热加热的中尺度对流系统与梅雨锋锋生之间的关系。
Using NCEP FNL analysis data, black body temperature from FY-2E satellite, conventional and auto-metrological stations' observational precipitation data, and simulation output from high-resolution mesoscale model WRF V3.3 to analyze a precipitation process in Jiang-Huai valley in June 2011. Analysis results show that the simulation results are in good agreement with the observations when comparing the precipitation between simulations and observations and reproduce the precipitation process well. This precipitation process was controlled and influenced by the surface low and Meiyu front systems. Period from 14 to 15 June is the mature phase of whole precipitation process, and the most significant character of this period is that many mesoscale convective systems move and develop along the Meiyu front. To investigate how MCS impacts on Meiyu front and torrential rainfall, convective vorticity vector and its vertical component tendency equation were employed to analyze. The result shows that local variation for the vertical component was influenced by the diabatic term, and the relationships among diabatic heating, secondary circulation and Meiyu frontogenesis imply a CISK-like response between MCS and Meiyu frontogenesis. So as a good atmospheric variable, the convective vorticity vector, especially, the vertical component can be used to diagnose and reveal the relationship between MCS associated with diabatic heating and Meiyu frontogenesis.
[1]徐祥德, 陈联寿, 王秀荣, 等. 长江流域梅雨带水汽输送源-汇结构[J]. 科学通报, 2003, 48(21): 2288-2294.
[2]周玉淑, 高守亭, 邓国. 江淮流域2003年强梅雨期的水汽输送特征分析[J]. 大气科学, 2005, 29(2): 195-204.
[3]陈忠明, 杨康权. 2003年7月4-5日梅雨锋暴雨维持的诊断分析[J]. 高原气象, 2009, 28(6): 1316-1325.
[4]孙建华, 赵思雄. 华南"94·6"特大暴雨的中尺度对流系统及其环境场研究Ⅰ. 引发暴雨的β中尺度对流系统的数值模拟研究[J]. 大气科学, 2002, 26(4): 541-557.
[5]高守亭, 孙建华, 崔晓鹏. 暴雨中尺度系统数值模拟与动力诊断研究[J]. 大气科学, 2008, 32(4): 854-866.
[6]张建海, 曹艳艳, 陈柯辰. 2011年浙江梅汛期前后旱涝急转形势及梅雨锋结构特征分析[J]. 高原气象, 2013, 32(1): 221-233, doi: 10.7522/j.issn.1000-0534.2013.00022.
[7]何斌, 何锋, 范晓红, 等. 一次长江中下游梅雨锋暴雨过程的诊断分析[J]. 高原气象, 2013, 32(4): 1074-1083, doi: 10.7522/j.issn.1000-0534.2012.00101.
[8]赵玉春, 李泽椿, 王叶红, 等. 2006年6月5~8日梅雨锋上中尺度对流系统引发福建北部暴雨的诊断分析[J]. 大气科学, 2008, 32(2): 598-614.
[9]黄明策, 李江南, 农孟松, 等. 一次华南西部低涡切变特大暴雨的中尺度特征分析[J]. 气象学报, 2010, 68(5): 748-762.
[10]Chen C, Tao W K, Lin P L, et al. The intensification of Low-Level Jet during the development of mesoscale convective systems on a Meiyu front[J]. Mon Wea Rev, 1998, 126: 349-371.
[11]Chen G T J, Wang C C, Liu S C S. Potential vorticity diagnostics of a Meiyu front case[J]. Mon Wea Rev, 2003, 131: 2680-2696.
[12]赵兵科, 万日金, 鲁小琴. 2003年夏季梅雨期强弱江淮气旋成因对比分析[J]. 高原气象, 2010, 29(2): 309-320.
[13]王晓芳, 胡伯威, 李红莉, 等. 梅雨期一个伴有前导层状降水对流线的结构特征[J]. 高原气象, 2011, 30(4): 1052-1066.
[14]王晓芳, 汪小康, 徐桂荣. 2010年长江中游梅雨期β中尺度系统环境特征的分析[J]. 高原气象, 2013, 32(3): 750-761, doi: 10.7522/j.issn.1000-0534.2012.00070.
[15]Zhang Man, Zhang Dalin. Subkilometer simulation of a torrential-rain-producing mesoscale convective system in east China. Part I: Model verification and convective organization[J]. Mon Wea Rev, 2012, 140: 184-201.
[16]鞠永茂, 王汉杰, 钟中, 等. 一次梅雨锋暴雨云物理特征的数值模拟研究[J]. 气象学报, 2008, 66(3): 381-395.
[17]隆霄, 潘维玉, 邱崇践, 等. 一次非典型梅雨锋暴雨过程及其中尺度系统的数值模拟[J]. 高原气象, 2009, 28(6): 1335-1347.
[18]Gao Shouting, Ping Fan, Li Xiaofan, et al. A convective vorticity vector associated with tropical convection: A two-dimensional cloud-resolving modeling study[J]. J Geophys Res, 2004, 109: D14106, doi:10.1029/2004JD004807.
[19]Gao Shouting, Cui Xiaopeng, Zhou Yushu, et al. A modeling study of moist and dynamic vorticity vectors associated with two-dimensional tropical convection[J]. J Geophys Res, 2005, 110: D17104, doi:10.1029/2005JD005675.
[20]Gao Shouting, Li Xiaofan, Tao Weikuo, et al. Convective and moist vorticity vectors associated with tropical oceanic convection: A three-dimensional cloud-resolving model simulation[J]. J Geophys Res, 2007, 112: D01105, doi:10.1029/2006JD007179.
[21]赵宇, 高守亭. 对流涡度矢量在暴雨诊断分析中的应用研究[J]. 大气科学, 2008, 32(3): 444-456.
[22]赵宇, 崔晓鹏. 对流涡度矢量和湿涡度矢量在暴雨诊断分析中的应用研究[J]. 气象学报, 2009, 67(4): 540-548.
[23]Cui Xiaopeng, Gao Shouting, Li Xiaofan. Diagnostic analysis of mesoscale rainstorms in the Jiang-Huai valley of China with convective vorticity vector[J]. Progress in Natural Science, 2007, 17(5): 559-568.
[24]封国林, 杨涵洧, 张世轩, 等. 2011年春末夏初长江中下游地区旱涝急转成因初探 [J]. 大气科学, 2012, 36(5): 1009-1026.
[25]黄威. 2011年6月大气环流和天气分析 [J]. 气象, 2011, 37(9): 1178-1184.
[26]Doswell C A, Brooks III H E, Maddox R A. Flash flood forecasting: An ingredients-based methodology[J]. Wea Forecasting, 1996, 11: 560-581.
[27]Kuo Y H, Anthes R A. Numerical simulation of a Meiyu system over southeastern Asia[J]. Pap Meteor Res, 1982, 5: 15-36.
[28]高守亭. 大气中尺度运动的动力学基础及预报方法[M]. 北京: 气象出版社, 2007: 181.
[29]陈鹏, 刘德, 周盈颖, 等. 一次重庆特大暴雨过程的中尺度分析[J]. 高原气象, 2015, 34(1): 82-92, doi: 10.7522/j.issn.1000-0534.2013.00162.
[30]孙玉稳, 李宝东, 刘伟, 等. 河北秋季层状云物理结构及适播性分析[J]. 高原气象, 2015, 34(1): 237-250, doi: 10.7522/j.issn.1000-0534.2013.00172.
[31]岳彩军, 曹钰, 李小凡. 垂直螺旋度的拓展研究及应用[J]. 高原气象, 2014, 33(5): 1281-1288, doi: 10.7522/j.issn.1000-0534.2013.00115.
[32]罗娟, 陈忠明. 一次湖南暴雨过程β中尺度系统分析与模拟[J]. 高原气象, 2014, 33(2): 495-503, doi: 10.7522/j.issn.1000-0534.2013.00011.