论文

淮河流域夏季降水与中高纬波列结构的关系

  • 史恒斌
展开
  • 河南省气候中心, 郑州 450003;2. 中国气象局农业气象保障与应用技术重点开放实验室, 郑州 450003

收稿日期: 2013-05-03

  网络出版日期: 2015-04-28

基金资助

国家重点基础研究发展计划(973计划)项目(2010CB428401); 河南省气象局气象科学研究项目(z201205)

Relationship between the Precipitation in Huai River Basin in Summer and the Wavelike Structure in Mid-High Latitude

  • SHI Hengbin
Expand
  • Henan Climate Center, Zhengzhou 450003, China;2. Henan Key Laboratory of Agrometerological Support and Applied Technique, China Meteorological Administration, Zhengzhou 450003, China

Received date: 2013-05-03

  Online published: 2015-04-28

摘要

利用NCEP/NCAR再分析资料, 通过合成分析、诊断分析等方法研究了淮河流域夏季降水异常年份的大尺度环流场, 并且分析了造成这种环流背景的可能原因.结果表明: 西风急流在多雨年和少雨年作为波导的作用没有变化, 但多雨年西风急流的位置比少雨年偏东。在中高纬地区, 多雨和少雨年200 hPa沿西风急流的定常Rossby波列结构有明显的不同。在多雨年, 有一条明显的沿西风急流传播的Rossby波列结构, 波源位于西欧和中亚, 波汇位于里海和我国淮河流域地区, 日本以东的西北太平洋也是明显的波源区; 在少雨年, 西欧和中亚的波源地区的波活动明显减弱, 原来位于淮河流域的波汇区南压到长江以南, 西北太平洋上的波活动也明显减弱。这种波列结构的不同可能是造成淮河流域夏季降水异常的一个重要原因。

本文引用格式

史恒斌 . 淮河流域夏季降水与中高纬波列结构的关系[J]. 高原气象, 2015 , 34(2) : 436 -443 . DOI: 10.7522/j.issn.1000-0534.2013.00186

Abstract

By using NCEP/NCAR reanalysis data, the synthesize methods and the diagnoses methods; the general circulation background of the abnormal precipitation year in Huai River basin and the cause of this general circulation were analyzed. The main result was: there was no significant difference about the westerly jet stream as a wave guide between rainy yeas and dry years, but the location of the jet stream in rainy years are east than in dry years. There was a significant different static Rossby wave structure along the jet stream between rainy years and dry years. In rainy years, there was a obviously Rossby wave along the west jet stream, and the wave source located at West Europe and Central Asia, and the wave sink located at Caspian Sea, Huai River basin and north Pacific. In dry years, the wave source located at West Europe and Central Asia were weakly, and the wave sink in Huai River basin before has moved to the south of Yangtze River, the wave sink located at the North Pacific was also weakly. The difference of the wave structure between rainy years and dry years maybe was an important reason of the abnormal precipitation in Huai River in summer.

参考文献

[1]于琳琳, 陈海山. 青藏高原4月陆面状况和地表加热异常与中国夏季降水的关系[J]. 高原气象, 2012, 31(5): 1173-1182.
[2]许建玉, 王慧娟, 李宏毅. 夏季青藏高原地区水汽收支的初步模拟分析[J]. 高原气象, 2014, 33(5): 1173-1181, doi: 10.7522/j.issn.1000-0534.2013.00117.
[3]胡景高, 陶丽, 周兵. 南亚高压活动特征及其与我国东部夏季降水的关系[J]. 高原气象, 2010, 29(1): 128-136.
[4]朱玲, 左洪超, 李强, 等. 夏季南亚高压的气候变化特征及其对中国东部降水的影响[J]. 高原气象, 2010, 29(3): 671-679.
[5]孙凤华, 张耀存, 郭兰丽, 等. 中国东部夏季降水与同期东亚副热带急流年代际异常的关系[J]. 高原气象, 2009, 28(6): 1308-1315.
[6]魏林波, 周甘霖, 王式功, 等. 亚洲副热带高空急流活动的气候特征及其与我国部分地区夏季降水的关系[J]. 高原气象, 2012, 31(2): 87-93.
[7]江志红, 梁卓然, 刘征宇, 等. 2007年淮河流域强降水过程的水汽输送特征分析[J]. 大气科学, 2011, 35(2): 361-372.
[8]李勇, 周兵, 金荣花. 2007年淮河强降水时期低频环流特征[J]. 气象学报, 2010, 68(5): 740-747.
[9]张建海, 曹艳艳, 陈柯辰. 2011年浙江梅汛期前后旱涝急转形势及梅雨锋结构特征分析[J]. 高原气象, 2013, 32(1): 221-233, doi: 10.7522/j.issn.1000-0534.2013.00022.
[10]赵振国, 朱艳峰, 柳艳香, 等. 1880 - 2006 年中国夏季雨带类型的年代际变化特征[J]. 气候变化研究进展, 2008, 4(2): 95-100.
[11]王绍武. 现代气候学研究进展[M]. 北京: 气象出版社, 2001: 226-232.
[12]Zhou T, Gong D, Li J, et al. Detecting and understanding the multi-decadal variability of the East Asian Summer Monsoon-Recent progress and state of affair[J]. Meteorologische Zeitschrift, 2009, 18(4): 455-467.
[13]王会军, 范可. 东亚季风近几十年来的主要变化特征[J]. 大气科学, 2013, 37(2): 313-318.
[14]刘海文, 周天军, 朱玉祥, 等. 东亚夏季风自20世纪90年代初开始恢复增强[J]. 科学通报, 2012, 57(9): 765-769.
[15]柳艳香, 赵振国, 朱艳峰, 等. 2000年以来夏季长江流域降水异常研究[J]. 高原气象, 2008, 27(4): 807-813.
[16]何斌, 何锋, 范晓红, 等. 一次长江中下游梅雨锋暴雨过程的诊断分析[J]. 高原气象, 2013, 32(4): 1074-1083, doi: 10.7522/j.issn.1000-0534.2012.00101.
[17]Kalnay E, Kanamitsu M, Kistler R. The NCEP/NCAR 40-year reanalysis project[J]. Bull Amer Meteor Soc, 1996, 77: 437-470.
[18]魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 1999: 77-82.
[19]马开玉, 丁裕国, 屠其璞. 气候统计原理与方法[M]. 北京: 气象出版社, 1993: 315-335.
[20]吴洪宝, 吴蕾. 气候变率诊断和预测方法[M]. 北京: 气象出版社, 2005: 192-198.
[21]高辉. 淮河夏季降水与赤道东太平洋海温对应关系的年代际变化[J]. 应用气象学报, 2006, 17(1): 1-9.
[22]Hoskins B J, Ambrizzi T. Rossby wave propagation on a realistic longitudinally varying flow[J]. J Atmos Sci, 1993, 50(12): 1661-1671.
[23]Takaya K, Nakamura H. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow[J]. J Atmos Sci, 2001, 58: 608-627.
[24]Zhou Tianjun, Yu Rucong. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China[J]. J Geophys Res, 2005, 110, D08104, doi:10.1029/2004JD005413.
[25]况雪原, 张耀存. 东亚副热带西风急流季节变化特征及其热力影响机制探讨[J]. 气象学报, 2006, 64(5): 564-574.
[26]况雪原, 张耀存. 东亚副热带西风急流位置异常对长江中下游夏季降水的影响[J]. 高原气象, 2006, 25(3): 382-389.
[27]Ambrizzi T, Hoskins B J, Hsu H H. Rossby wave propagation and teleconnection patterns in the Austral winter[J]. J Atmos Sci, 1995, 52(21): 3661-3672.
[28]Enomoto T, Hoskins B J, Matsuda Y. The formation mechanism of the Bonin high in August[J]. Quart J Roy Meteor Soc, 2003, 129: 157-178.
[29]Hsu H H, Lin S M. Asymmetry of the tripole rainfall pattern during the East Asian Summer[J]. J Climate, 2007, 20: 4443-4458.
[30]陆日宇, 黄荣辉. 东亚-太平洋遥相关型波列对夏季东北亚阻塞高压年际变化的影响[J]. 大气科学, 1998, 22(5): 727-734.
[31]Wang Yafei. Effects of blocking anticyclones in Eurasia in the rainy season (Meiyu /Baiu season)[J]. J Meteor Soc Japan, 1992, 70: 929-951.
[32]Li Jian, Yu Rucong, Zhou Tianjun. Teleconnection between NAO and Climate Downstream of the Tibetan Plateau[J]. J Climate, 2008, 21(18): 4680-4690.
[33]Xin Xiaoge, Zhou Tianjun, Yu Rucong. Increased Tibetan Plateau snow depth: An indicator of the connection between enhanced winter NAO and late-spring tropospheric cooling over East Asia[J]. Adv Atmos Sci, 2010, 27(4): 788-794.
[34]Yu Rucong, Zhou Tianjun. Impacts of winter-NAO on March cooling trends over subtropical Eurasia continent in the recent half century[J]. Geophys Res Lett, 2004, 31, L12204, doi:10.1029/2004GL019814.
[35]宇如聪, 周天军, 李建, 等. 中国东部气候年代际变化三维特征的研究进展[J]. 大气科学, 2008, 32(4): 893-905.
[36]Yang Song, Lau K M, Yoo S H, et al. Upstream subtropical signals preceding the Asian summer monsoon circulation[J]. J Climate, 2004, 17(21): 4213-4229.
文章导航

/