利用1980-2010年中国南方20站逐日多时次天气观测资料, 统计了雷暴的日、季节、多年变化特征, 以及相应的大气物理量和环流特征变化。结果表明: 雷暴频次的日变化呈午后到凌晨多, 12:00(世界时, 下同)频次最高(9%), 03:00最低(2%); 夏季频次高冬季低, 其中7-8月最高(>35%), 12月至次年1月最低(<1%)。20世纪80年代至21世纪初, 年际和夏季(7-8月)雷暴频次均呈下降的趋势, 分别为-1%·(10a)-1和-3.5%·(10a)-1, 21世纪00年代后则有弱的增加趋势。全年统计雷暴日降水占总降水的48%, 而在夏季则为64%。全年和夏季雷暴日降水比率的变化, 均与雷暴频次的变化有较好的一致性, 相关系数分别达0.46和0.71。对应雷暴频次的年际变化, 东亚地区大气环流场表现出大尺度的异常变化。雷暴频次偏高时, 西太平洋副热带高压异常偏弱, 南方对流层中上层有异常的上升运动。同时, 从热力不稳定指标上看, 夏季异常偏高的全总指数、异常偏高的对流有效位能指数均与夏季雷暴频次显著相关, 分别为0.58和0.76。而近30年南方雷暴频次与对应的地面气温存在统计上的关联, 但这是否与雷暴热力和动力因子对全球气候变化的响应有关, 尚需深入研究。
By using the observed data from 20 weather stations in South China, the characteristics of diurnal, seasonal, multi-year variations and relative atmospheric physical parameters and circulation fields were demonstrated. The results showed that the thunderstorm frequency peak from afternoon to the evening(9% at 12:00(UTC, hereafter the same)), and least in the morning(2% at 03:00). The higher thunderstorm frequency occurred in July and August (>35%), and the lower thunderstorm frequency in December and January(<1%). The annual and summer thunderstorm frequency decreased with a rate of -1%·(10a)-1 and -3.5%·(10a)-1 from 1980s to 21th century, yet after 21th century, it has a weak increasing trend. On the whole year, the ratio of thunderstorm precipitation and total precipitation was 48%, but in summer, the value was 64%. The variation of annual(summer) thunderstorm precipitation were relatively similar with annual(summer) thunderstorm frequency, their correlation coefficient was 0.46(0.71). In summer, accompany with the variation of thunderstorm frequency, the atmospheric circulation exhibits large-scale abnormally in east Asia. During higher thunderstorm frequency month, the western Pacific subtropical high was abnormally weaker. Meanwhile, there was abnormally ascending flows in the upper-middle troposphere over the South China. In addition, from the view of thermal instability, the abnormally high total tolals index and abnormally high convective available potential energy index has significant relationship with thunderstorm frequency, their correlation coefficients were 0.58 and 0.76. The thunderstorm frequency has statistical relevance with the surface temperature, however, it requires substantial investigation to make sure that whether it is a response of thunderstorms thermal and dynamical factor to the global climate change.
[1]朱乾根, 林锦瑞. 天气学原理和方法[M]. 北京: 气象出版社, 2007: 401-412.
[2]易燕明, 杨兆礼, 万齐林. 雷电灾害对珠江三角洲区域经济发展的影响[J]. 资源科学, 2005, 27(1): 64-68.
[3]IPCC. Climate change 2001: Synthesis Report. A contribution of working groups Ⅰ, Ⅱ and Ⅲ to the third assessment report of inter-governmental panel on climate change[M]//Waston R T and the Core writing team eds. Cambridge, Cambridge University Press, 2001.
[4]Zheng Linlin, Sun Jionhua, Wei Jie. Thunder events in China:1980-2008[J]. Atmospheric and Oceanic Science Letters, 2010, 3: 181-188.
[5]林建, 曲晓波. 中国雷电事件的时空分布特征[J]. 气象, 2008, 34(11): 22-32.
[6]陈思蓉, 朱伟军, 周兵. 中国雷暴气候分布特征及变化趋势[J]. 大气科学学报, 2009, 32(5): 703-710.
[7]郑琳琳, 孙建华, 卫捷. 我国雷暴的日变化特征[J]. 暴雨灾害, 2011, 30(2): 137-144.
[8]李吉顺. 我国雷暴日变化的若干特征[J]. 气象, 1984, 6: 19-21.
[9]尤伟, 臧增亮, 潘晓滨, 等. 夏季青藏高原雷暴天气及其天气学特征的统计分析[J]. 高原气象, 2012, 31(6): 1523-1529.
[10]徐桂玉, 杨修群. 我国南方雷暴的气候特征研究[J]. 气象科学, 2001, 21(3): 299-307.
[11]张敏锋, 冯霞. 我国雷暴天气的气候特征[J]. 热带气象学报, 1985, 14(2): 156-162.
[12]张翠华, 张义军, 郄秀书, 等. 平凉地区对流风暴地闪活动与环境层层结因子相关性分析[J]. 高原气象, 2002, 21(6): 632-636.
[13]郑栋, 张义军, 吕伟涛, 等. 大气不稳定度参数与闪电活动的预报[J]. 高原气象, 2005, 24(2): 196-203.
[14]郭风霞, 张义军, 言穆弘, 等. 环境温湿层结对雷暴云空间电荷结构的影响[J]. 高原气象, 2004, 23(5): 678-683.
[15]郭凤霞, 刘冰, 白翎, 等. 中低层水平风速对闪电和降水影响的数值模拟[J]. 高原气象, 2014, 33(4): 1135-1145, doi: 10.7522/j.issn.1000-0534.2013.00004.
[16]钱嘉星, 徐海明, 万齐林. 珠江三角洲城市群对雷暴的影响[J]. 热带气象学报, 2010, 26(1): 40-48.
[17]蒙伟光, 闫敬华, 扈海波. 城市化对珠江三角洲强雷暴天气的可能影响[J]. 大气科学, 2007, 31(2): 364- 376.
[18]Brooks H E, Lee J W, Craven J P. The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data[J]. Atmos Res, 2003, 67-68: 73-94.
[19]Dai A G. Global precipitation and thunderstorm frequencies.Part II: Diurnal Variations[J]. J Climate, 2000, 14: 1112-1128.
[20]Zuzanna B B. Long-term variability of thunderstorm occurrence in Poland in the 20th century[J]. Atmos Res, 2003, 67-68: 35-52.
[21]Delden A. The synoptic setting of thunderstorms in western Europe[J]. Atmos Res, 2001, 56: 89-110.
[22]Petersen W A, Rutledge S A, Orville R E. Cloud-to-ground lightning observations from TOGA COARE: Selected results and lightning location algorithms[J]. Mon Wea Rev, 1996, 124(4): 602-620.
[23]Halverson J B, Richenbach T, Roy B, et al. Environmental characteristics of convective systems during TRMM-LBA[J]. Mon Wea Rev, 2002, 130(6): 1493-1509.
[24]Yu Rucong, Zhou Tianjun, Xiong Anyuon, et al. Diurnal variations of summer precipitation over contiguous China[J]. Geophys Res Lett, 2007, 34, L01704.
[25]Zhou Tianjun, Yu Rucong, Chen Haoming, et al. Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations[J]. J Climate, 2008, 21(16): 3997-4010.
[26]Li Jion, Yu Rucong, Zhou Tianjun. Seasonal variation of the diurnal cycle of rainfall in southern contiguous China[J]. J Climate, 2008, 21: 6036-6043.
[27]Bonner W D. Climatology of the low level jet [J]. Mon Wea Rev, 1968, 96(12): 833-850.
[28]孙淑清, 翟国庆. 低空急流的不稳定性及其对暴雨的触发作用[J]. 大气科学, 1980, 4(4): 327- 337.
[29]顾清源, 肖递祥, 黄楚惠, 等. 低空急流在副高西北侧连续性暴雨中的触发作用[J]. 气象, 2009, 35(4): 59-67.
[30]赖绍钧, 何芬, 陈海山, 等. 华南前汛期福建一次致洪暴雨过程的中尺度结构特征[J]. 高原气象, 2012, 31(1): 167-175.
[31]王蕾, 张文龙, 周军. 中国西南低空急流活动的统计分析[J]. 南京气象学院学报, 2003, 26(6): 797-805.
[32]Miller R C. Notes on analysis and severe-storm forecasting procedure of the air force global weather central, technical report 200(rev)[R]. Air Weather Service(MAC) United States Air Force, 1972.
[33]樊李苗, 俞小鼎. 中国短时强对流天气的若干环境参数特征分析[J]. 高原气象, 2013, 32(1): 156-165, doi: 10.7522/j.issn.1000-0534.2013.00016.
[34]Brooks H E. Severe thunderstorms and climate change[J]. Atmos Res, 2013, 123: 129-138.