利用20082010年7、 8月的CloudSat资料, 统计分析了青藏高原(下称高原)、 四川盆地及其过渡区域夏季降水云的宏微观物理特性和差异, 并结合FY-2D的TBB和台站降水资料进行个例分析, 深入探讨研究区域云物理特性的差异及其导致的降水差异.结果表明: (1)云宏观特性差异: 在7、 8月, 高原降水云以Cu和Ci主, 低云所占比例大于中云和高云, 过渡区和四川盆地降水云主要为Ns和Ci, 与四川盆地相比较, 高原云底高、 云顶低, 云的厚度薄, 对流较浅薄时便可降水.(2)云微观物理特性差异: 高原降水云以冰云为主, 混合相云次之, 水云最少, 四川盆地混合相云降水比例最大.统计时段多为云发展初期, 高原已有比四川盆地和过渡区云中的冰相粒子有效半径大、 谱宽较宽的趋势, 而数浓度相近, 利于冷云过程的发展, 四川盆地冷云降水过程启动较慢.
The statistical discrepancy of physical properties of summer precipitation clouds over the Qinghai-Xizang Plateau, Sichuan Basin and their transition region were analyzed, based on July and August CloudSat products from 2008 to 2010.At the same time, four examples from CloudSat, FY-2D TBB data and surface precipitation products were also analyzed to discuss how the different physical properties lead to the different precipitation of summer precipitation clouds over studying regions.The results showed that: (1) As to the macrophysical properties of clouds, the main precipitation clouds of the Qinghai-Xizang Plateau were Cu and Ci, low level clouds accounted for the largest proportion, it were Ns and Ci in Sichuan Basin and transition region.Compared with Basin, the clouds base was higher and top was lower in Plateau, it could rain while convection will not deep enough.In three regions, single layer cloud was easier to rain than multilayer one. (2) As for the microphysical properties of clouds, the main precipitation clouds of the Qinghai-Xizang Plateau was ice cloud, mixed cloud was second, the least was liquid water cloud, mixed cloud accounted for the largest proportion in Sichuan Basin.The clouds were mostly at the beginning of lifetimes in statistics, although the differences were not obvious, the effective radius and distribution width parameter of cloud ice particles over the Qinghai-Xizang Plateau were bigger and wider than those in the other two regions.Their number concentration were similarly, that could quicken the cold cloud processes.It was slower to developed ice cloud processes in Sichuan Basin than that in the Qinghai-Xizang Plateau.
[1]冯松, 汤懋苍, 王冬梅. 青藏高原是我国气候变化启动区的新证据[J]. 科学通报, 1998, 43(6): 633-636.
[2]Yu Rucong, Wang Bin, Zhou Tianjun. Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau[J]. J Climate, 2004, 17 (13) : 2702-2713.
[3]Chen Bode, Liu Xiaodong. Seasonal migration of cirrus clouds over the Asian monsoon regions and the Tibetan Plateau measured from MODIS/Terra[J/OL]. Geophys Res Lett, 2005, 32(1), doi: 10.1029 /2004GL020868.
[4]刘洪利, 朱文琴, 宜树华, 等. 中国地区云的气候特征分析[J]. 气象学报, 2003, 61(4): 466-473.
[5]魏丽, 钟强. 青藏高原云的气候学特征[J]. 高原气象, 1997, 16(1): 10-15.
[6]格桑, 唐小萍, 路红亚. 近35 年青藏高原雨量和雨日的变化特征[J]. 地理学报, 2008, 63(9): 924-930.
[7]建军, 杨志刚, 卓嘎. 近30年西藏汛期强降水事件的时空变化特征[J]. 高原气象, 2012, 31(2): 380-386.
[8]周万福, 周秉荣, 李晓东, 等. 青藏高原东部地区辐射平衡及各分量变化特征[J]. 高原气象, 2013, 32(2): 327-333, doi: 10.7522/j.issn.1000-0534.2012.00032.
[9]徐安伦, 李建, 孙绩华, 等. 青藏高原东南缘大理地区近地层微气象特征及能量交换分析[J]. 高原气象, 2013, 32(1): 9-22, doi: 10.7522/j.issn.1000-0534.2013.00002.
[10]卓嘎, 边巴次仁, 杨秀海, 等. 近30年西藏地区大气可降水量的时空变化特征[J]. 高原气象, 2013, 32(1): 23-30, doi: 10.7522/j.issn.1000-0534.2013.00003.
[11]卢鹤立, 邵全琴, 刘纪远, 等. 近44 年来青藏高原夏季降水的时空分布特征[J]. 地理学报, 2007, 62(9): 946-958.
[12]蔡英, 钱正安, 吴统文, 等. 青藏高原及周围地区大气可降水量的分布、 变化与各地多变的降水气候[J]. 高原气象, 2004, 23(1): 1-10.
[13]王维佳. 四川地区云和空中水资源分布与演变[J]. 气象科技, 2010, 2(38): 58-65.
[14]林之光. 贵州和四川盆地云量的气候研究[J]. 地理学报, 1986, 41(4): 289-301.
[15]胡豪然, 毛晓亮, 梁玲. 近50 年四川盆地汛期极端降水事件的时空演变[J]. 地理学报, 2009, 64(3): 278-288.
[16]李建云, 明灯, 张杰, 等. 四川盆地云的航空气候特征分析[J]. 四川气象, 2003, 83(1): 45-47.
[17]刘健. 利用卫星数据分析青藏高原云微物理特性[J]. 高原气象, 2013, 32(1): 38-45, doi: 10.7522/j.issn.1000-0534.2013.00005.
[18]Stephens G L, Vane D G, Boain R J, et al. The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation[J]. Bull Amer Meteor Soc, 2002, 83(12): 1771- 1790.
[19]陈隆勋, 宋玉宽, 刘骥平, 等. 从气象卫星资料揭示的青藏高原夏季对流云系的日变化[J]. 气象学报, 1999, 57(5): 549-560.
[20]张培昌, 杜秉玉, 戴铁丕. 雷达气象学[M]. 北京: 气象出版社, 2001: 40-45.
[21]Richard T A, Andrew J H, Graeme L S. Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature[J/OL]. J Geophy Res: Atmospheres (1984-2012), 2009, 114(D8), doi: 10.1029/2008JD010049.
[22]Wu D L, Austin R T, Deng M, et al. Comparisons of global cloud ice from MLS, CloudSat, and correlative data sets[J/OL]. J Geophys Res: Atmospheres (1984-2012), 2009, 114(D8), doi: 10.1029/2008JD009946.
[23]冯伟伟, 姚志刚, 韩志刚, 等. 星载毫米波雷达反演液态水云含水量的算法性能分析[J]. 解放军理工大学学报: 自然科学版, 2009, 10(增刊1): 95-102.
[24]刘黎平, 楚荣忠, 宋新民, 等. GAME-TIBET 青藏高原云和降水综合观测概况及初步结果[J]. 高原气象, 1999, 18(3): 441-450.
[25]陈渭民.卫星气象学[M]. 北京: 气象出版社, 2005: 409-411.
[26]费增坪, 王洪庆, 张焱, 等. 基于静止卫星红外云图的MCS自动识别与追踪[J]. 应用气象学报, 2011, 22(1): 115-122.
[27]陈永仁, 李跃清. "12·7·22"四川暴雨的MCS特征及对短时强降雨的影响[J]. 气象, 2013, 39(7): 848-860.
[28]Marchand R, Mace G G, Ackerman T, et al. Hydrometeor Detection Using CloudSat-An Earth-Orbiting 94-GHz Cloud Radar[J]. J Atmos Ocean Technol, 2008, 25(4): 519-533.
[29]Fu Yunfei, Liu Guosheng. Possible misidentification of rain type by TRMM PR over Tibetan plateau [J]. J Appl Meteor Climatol, 2007, 46(5): 667-672.
[30]洪延超, 周非非. "催化-供给"云降水形成机理的数值模拟研究[J]. 大气科学, 2005, 29(6): 885-896.