论文

NAO对青藏高原中东部夏季降水双极振荡模态影响的时间尺度厘定

  • 刘焕才 ,
  • 李曼 ,
  • 石培宏 ,
  • 刘力 ,
  • 孙建勇
展开
  • 中国科学院寒区旱区环境与工程研究所 冰冻圈科学国家重点实验室, 兰州 730000;2. 中国科学院大学, 北京 100049;3. 山西师范大学 地理科学学院, 临汾 041000;4. 中国科学院寒区旱区环境与工程研究所 内陆河流域生态水文重点实验室, 兰州 730000

收稿日期: 2014-09-29

  网络出版日期: 2015-06-28

基金资助

国家重点基础研究发展计划(973计划)项目(2010CB951703); 国家自然科学基金项目(40971290); 中国科学院战略性先导科技专项(XDA05080600)

Statistical Diagnosis of the Relationship between NAO and Dipole Oscillation of Summer Precipitation over Qinghai-Xizang Plateau in Multi-time Scales

  • LIU Huancai ,
  • LI Man ,
  • SHI Peihong ,
  • LIU Li ,
  • SUN Jianyong
Expand
  • State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Department of Geographical Science, Shanxi Normal University, Linfen 041000, China;4. Key Laboratory of Ecodrolody of Inland River Basin, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

Received date: 2014-09-29

  Online published: 2015-06-28

摘要

通过对1961-2010年青藏高原中东部66个台站夏季降水的EOF分析, 进一步证实在现代气候背景下南北双极振荡模态是夏季青藏高原最主要的降水空间结构, 并表现出较强的稳定性, 相关分析表明该模态与夏季北大西洋涛动(NAO)存在稳定密切的联系.集合经验模态分解(EEMD)能够根据NAO和青藏高原降水双极振荡模态时间系数序列自身的特点而把原序列中不同时间尺度的信息分离出来, 夏季NAO与青藏高原降水双极振荡模态之间最显著的联系主要发生在以准3~4年为周期的年际信号里, 因此, 以NAO为主的北大西洋大气活动(而非该地区的海温变化)可能是驱动青藏高原夏季降水南北双极振荡模态形成的最主要原因之一.

本文引用格式

刘焕才 , 李曼 , 石培宏 , 刘力 , 孙建勇 . NAO对青藏高原中东部夏季降水双极振荡模态影响的时间尺度厘定[J]. 高原气象, 2015 , 34(3) : 633 -641 . DOI: 10.7522/j.issn.1000-0534.2015.00031

Abstract

The spatiotemporal characteristics of summer precipitation over the Qinghai-Xizang Plateau (QXP) during 1961-2010 are investigated based on a developed daily precipitation dataset at 66 meteorological stations. According to the empirical orthogonal functions (EOF) analyses, it is confirmed that the reverse relationship between the northeastern and southeastern QXP is the main and stable spatial pattern of summer precipitation over the QXP in modern times which is defined as the Dipole Oscillation. And such Dipole Oscillation is mainly impacted by the summer North Atlantic Oscillation (NAO). The results show that ensemble empirical mode decomposition (EEMD) can extract the potential signals of multi-time scales effectively from the NAO index and time series of the Dipole Oscillation according to their own typical features. The correlation analysis reveals the most important correlation between NAO and Dipole Oscillation occurs at the interannual time scale with a spectral peak in 3~4 years. Further analysis implies the atmosphere activity represented by NAO rather than sea surface temperature over Atlantic should be considered as the main possible driver of the Dipole Oscillation.

参考文献

[1]宇婧婧, 刘屹岷, 李晓峰. 冬季青藏高原上游西风模态与中国降水及NAO的关联[J]. 高原气象, 2014, 33(4): 877-886, doi: 10.7522/j.issn.1000-0534.2013.00108.
[2]Liu Q, Yang Z, Cui B. Spatial and temporal variability of annual precipitation during 1961-2006 in Yellow River Basin, China[J]. J Hydrol, 2008, 361: 330-338, doi:10.1016/j.jhydrol.2008.08.002.
[3]解承莹, 李敏姣, 张雪芹, 等. 青藏高原南缘关键区夏季水汽输送特征及其与高原降水的关系[J]. 高原气象, 2015, 34(2): 327-337, doi: 10.7522/j.issn.1000-0534.2014.00034.
[4]Yang J, Tan C, Zhang T. Spatial and temporal variations in air temperature and precipitation in the Chinese Himalayas during the 1971-2007[J]. Int J Climatol, 2013, 33: 2622-2632, doi: 10.1002/joc.3609.
[5]王婉昭, 高艳红, 许建伟. 青藏高原及其周边干旱区气候变化特征与GLDAS适用性分析[J]. 高原气象, 2013, 32(3): 635-645, doi: 10.7522/j.issn.1000-0534.2013.00054.
[6]Yang B, Qin C, Wang J, et al. A 3, 500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2014, 111: 2903-2908, doi: 10.1073/pnas.131923811.
[7]Maussion F, Scherer D, Mlg T, et al. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis[J]. J Climate, 2014, 27: 1910-1927, doi: 10.1175/JCLI-D-13-00282.1.
[8]Tong K, Su F, Yang D, et al. Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals[J]. Int J Climatol, 2014, 34: 265-285, doi: 10.1002/joc.3682.
[9]Simmonds I, Bi D, Hope P. Atmospheric water vapor flux and its association with rainfall in China in summer[J]. J Climate, 1999, 12: 1353-1367.
[10]Liu X, Yin Z Y. Spatial and temporal variation of summer precipitation over the eastern Tibetan plateau and the North Atlantic Oscillation[J]. J Climate, 2001, 14: 2896-2909.
[11]刘焕才, 段克勤. 北大西洋涛动对青藏高原夏季降水的影响[J]. 冰川冻土, 2012, 34(2): 311-318.
[12]Webster P J, Yang S. Monsoon and ENSO: Selectively interactive systems[J]. Quart J Roy Meteor Soc, 1992, 118: 877-926, doi: 10.1002/qj.49711850705.
[13]Saji N H, Goswami B N, Vinayachandran P N, et al. A dipole mode in the tropical Indian Ocean[J]. Nature, 1999, 401: 361-363.
[14]Chang C P, Zhang Y, Li T. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: roles of the subtropical ridge[J]. J Climate, 2000, 13: 4310-4325.
[15]Chang C P, Zhang Y, Li T. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: Meridional structure of the monsoon[J]. J Climate, 2000, 13: 4326-4340.
[16]Hong C C, Lu M M, Kanamitsu M. Temporal and spatial characteristics of positive and negative Indian ocean dipole with and without ENSO[J]. J Geophys Res: Atmospheres, 2008, 113, D08107, doi: 10.1029/2007JD009151.
[17]Yun K S, Seo K H, Ha K J. Relationship between ENSO and northward propagating intraseasonal oscillation in the east Asian summer monsoon system[J]. J Geophys Res: Atmospheres, 2008, 113, D14120, doi: 10.1029/2008JD009901.
[18]Ju J, Slingo J. The Asian summer monsoon and ENSO[J]. Quart J Roy Meteor Soc, 1995, 121: 1133-1168, doi: 10.1002/qj.49712152509.
[19]Webster P J, Palmer T N. The past and the future of El Nio[J]. Nature, 1997, 390: 562-564.
[20]Goswami B N. Interannual variations of Indian summer monsoon in a GCM: external conditions versus internal feedbacks[J]. J Climate, 1998, 11: 501-522.
[21]Lau N C, Wang B. Interactions between the Asian monsoon and the El Ni?o Southern Oscillation[M]// Wang B. The Asian monsoon. Chichester: Springer-Praxis, 2006: 479-511.
[22]Ashok K, Guan Z, Yamagata T. Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO[J]. Geophys Res Lett, 2001, 28(23): 4499-4502, doi: 10.1029/2001GLO13294.
[23]Cherchi A, Navarra A. Influence of ENSO and of the Indian Ocean Dipole on the Indian summer monsoon variability[J]. Climate Dyn, 2013, 41(1): 81-103, doi: 10.1007/s00382-012-1602-y.
[24]Liebmann B, Hartmann D L. An observational study of tropical midlatitude interaction on intraseasonal time scales during winter[J]. J Atmos Sci, 1984, 41: 3333-3350.
[25]Yang S, Lau K M, Yoo S H, et al. Upstream subtropical signals preceding the asian summer monsoon circulation[J]. J Climate, 2004, 17: 4213-4229.
[26]Zhu X, Bothe O, Fraedrich K. Summer atmospheric bridging between Europe and East Asia: Influences on drought and wetness on the Tibetan Plateau[J]. Quaternary International, 2011, 236: 151-157, doi: 10.1016/j.quaint.2010.06.015.
[27]Gao Y, Wang H J, Li S. Influences of the Atlantic Ocean on the summer precipitation of the southeastern Tibetan Plateau[J]. J Geophys Res: Atmospheres, 2013, 118: 3534-3544, doi: 10.1002/jgrd.50290.
[28]Mlg T, Maussion F, Scherer D. Mid-latitude westerlies as a driver of glacier variability in monsoonal high Asia[J]. Nature Climate Change, 2014, 4: 68-73.
[29]Barnston A G, He Y. Impacts of the NAO on U.S. and Canadian surface climate, implications for seasonal prediction[C]. Proceedings of the 21<sup>st</sup> Annual Climate Diagnostics and Prediction Workshop, Alabama, USA, 1996: 34-37.
[30]Jones P D, Conway D. Precipitation in the British Isles: an analysis of area-average data updated to 1995[J]. Int J Climatol, 1997, 17: 427-438.
[31]Thompson D W J, Wallace J M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields[J]. Geophys Res Lett, 1998, 25: 1297-1300, doi: 10.1029/98GL00950.
[32]Brandimarte L, Di Baldassarre G, Bruni G, et al. Relation between the North-Atlantic Oscillation and hydroclimatic conditions in Mediterranean areas[J]. Water Resource Management, 2011, 25: 1269-1279, doi: 10.1007/s11269-010-9742-5.
[33]Hurrell J W, Van Loon H. Decadal changes in the circulation of the Northern Hemisphere: Relation to surface temperature[C]. Proceedings of the 20<sup>th</sup> Annual Climate Diagnostics Workshop, Seattle, Washington USA, 1995: 292-295.
[34]Hurrell J W. Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere[J]. Geophys Res Lett, 1996, 23: 665-668, doi: 10.1029/96GL00459.
[35]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of the Royal Society of London Series A, 1998, 454: 903-995.
[36]王婷. EMD算法研究及其在信号去噪中的应用[D]. 哈尔滨: 哈尔滨工程大学, 2010.
[37]Wu Z, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1: 1-41, doi: 10.1142/S1793536909000047.
[38]Wu Z, Schneider E K, Kirtman B P, et al. The modulated annual cycle: an alternative reference frame for climate anomalies[J]. Climate Dyn, 2008, 31: 823-841, doi: 10.1007/s00382-008-0437-z.
[39]Qian C, Fu C, Wu Z, et al. On the secular change of spring onset at Stockholm[J]. Geophys Res Lett, 2009, 36, L12706, doi: 10.1029/2009GL038617.
[40]Franzke C. Long range dependence and climate noise characteristics of Antarctic temperature data[J]. J Climate, 2010, 23: 6074-6081.
[41]Shi F, Yang B, Gunten L, et al. Ensemble empirical mode decomposition for tree-ring climate reconstructions[J]. Theor Appl Climatol, 2012, 109: 233-243, doi: 10.1007/s00704-011-0576-8.
[42]龚道溢, 王绍武. 北大西洋涛动指数的比较及其年代际变率[J]. 大气科学, 2000, 24: 187-192.
[43]李崇银, 李桂龙. 北大西洋涛动和北太平洋涛动的演变与20世纪60年代的气候突变[J]. 科学通报, 1999, 44: 1765-1769.
[44]Hurrell J W, Van Loon H. Decadal variations in climate associated with the North Atlantic Oscillation[J]. Climatic Change, 1997, 36: 301-326, doi: 10.1023/A:1005314315270.
[45]朱智慧. 北大西洋涛动与极涡的变化研究[D]. 青岛: 中国海洋大学, 2009.
[46]刘桂芳, 卢鹤立. 1961-2005年来青藏高原主要气候因子的基本特征[J]. 地理研究, 2010, 29: 2281-2288.
[47]韦志刚, 黄荣辉, 董文杰. 青藏高原气温和降水的年际和年代际变化[J]. 大气科学, 2003, 27: 157-170.
[48]周顺武, 王传辉, 杜军, 等. 青藏高原汛期降水的时空分布特征[J]. 气候与环境研究, 2011, 16: 723-732.
[49]李泽霞, 姚檀栋, 田立德, 等. 德令哈降水中δ18O年际变化与水汽输送[J]. 地学前沿, 2006, 13: 330-334.
[50]Xu H, Hou Z, Ai L, et al. Precipitation at Lake Qinghai, NE Qinghai-Tibet Plateau, and its relation to Asian summer monsoons on decadal/interdecadal scales during the past 500 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 541-549, doi: 10.1016/j.palaeo.2007.07.007.
[51]Tian L, Ma L, Yu W, et al. Seasonal variations of stable isotope in precipitation and moisture transport at Yushu, eastern Tibetan Plateau[J]. Science in China, 2008, 51: 1121-1128, doi: 10.1007/s11430-008-0089-1.
[52]Yu W, Ma Y, Sun W, et al. Climatic significance of δ18O records from precipitation on the western Tibetan Plateau[J]. Chinese Science Bulletin, 2009, 54: 2732-2741, doi: 10.1007/s11434-009-0495-6.
[53]Yao T, Zhou H, Yang X. Indian monsoon influences altitude effect of δ18O in precipitation/river water on the Tibetan Plateau[J]. Chinese Science Bulletin, 2009, 54: 2724-2731, doi: 10.1007/s11434-009-0497-4.
[54]Wei F Y, Xie Y, Mann M E. Probabilistic trend of anomalous summer rainfall in Beijing: Role of interdecadal variability[J]. J Geophys Res: Atmospheres, 2008, 113, D20106, doi: 10.1029/2008JD010111.
[55]杨莲梅, 张庆云. 北大西洋涛动对新疆夏季降水异常的影响[J]. 大气科学, 2008, 32: 1187-1196.
[56]Gu W, Li C Y, Li W J, et al. Interdecadal unstationary relationship between NAO and east China's summer precipitation patterns[J]. Geophys Res Lett, 2009, 36, L13702, doi: 10.1029/2009GL038843.
[57]魏娜, 巩远发, 孙娴, 等. 西北地区近50a降水变化及水汽输送特征[J]. 中国沙漠, 2010, 30(6): 1450-1457.
[58]Bothe O, Fraedrich K, Zhu X. The large-scale circulations and summer drought and wetness on the Tibetan Plateau[J]. Int J Climatol, 2010, 30: 844-855, doi: 10.1002/joc.1946.
[59]Bothe O, Fraedrich K, Zhu X. Large-scale circulations and Tibetan plateau summer drought and wetness in the high-resolution climate model[J]. Int J Climatol, 2011, 31: 832-846, doi: 10.1002/joc.2124.
[60]Liu Huancai, Duan Keqin, Li Man, et al. Impact of the North Atlantic Oscillation on the Dipole Oscillation of summer precipitation over the central and eastern Tibetan Plateau[J]. Int J Climatol, 2015, doi: 10.1002/joc.4304.
[61]杨舵, 史玉光. 新疆春季降水与北大西洋海温关系的事实分析[J]. 应用气象学报, 2002, 13(4): 478-484.
[62]曲金华, 江志红, 谭桂容, 等. 冬季北大西洋海温年际、 年代际变化与中国气温的关系[J]. 地理科学, 2006, 26(5): 5557-5563.
[63]Wu Z W, Wang B, Li J P, et al. An empirical seasonal prediction model of the east Asian summer monsoon using ENSO and NAO[J]. J Geophys Res: Atmospheres, 2009, 114, D18120, doi: 10.1029/2009JD011733.
[64]Gu W, Li C Y, Wang X, et al. Linkage between Meiyu precipitation and North Atlantic SST on the decadal time scale[J]. Adv Atmos Scis, 2009, 26(1): 101-108, doi: 10.1007/s00376-009-0101-5.
[65]Zuo J Q, Li W J, Sun C H, et al. Impact of North Atlantic sea surface temperature tripole on the East Asian summer monsoon[J]. Adv Atmos Sci, 2013, 30(4): 1173-1186, doi: 10.1007/s00376-012-2125-5.
[66]Bjerkness J. Atlantic air-sea interation[J]. Adv Geophys, 1964, 10: 1-82.
[67]周天军, 宇如聪, 郜永琪, 等. 北大西洋年际变率的海气耦合模式模拟Ⅰ局地海气相互作用[J]. 气象学报, 2006, 64(1): 1-17.
文章导航

/