论文

植被根系对青藏高原中部土壤水热过程影响的模拟

  • 李凯 ,
  • 高艳红 ,
  • Chen Fei ,
  • 许建伟 ,
  • 蒋盈沙 ,
  • 肖林鸿 ,
  • 李瑞青 ,
  • 潘永洁
展开
  • 中国科学院寒区旱区环境与工程研究所 寒旱区陆面过程与气候变化重点试验室, 兰州 730000;2. 中国科学院大学, 北京 100049;3. 美国国家大气研究中心, Boulder CO, 80301

收稿日期: 2014-12-02

  网络出版日期: 2015-06-28

基金资助

中国科学院百人计划项目(Y251551001); 全球变化国家重大科学研究计划(2013CB956004)

Simulation of Impact of Roots on Soil Moisture and Surface Fluxes over Central Qinghai-Xizang Plateau

  • LI Kai ,
  • GAO Yanhong ,
  • CHEN Fei ,
  • XU Jianwei ,
  • JIANG Yingsha ,
  • XIAO Linhong ,
  • LI Ruiqing ,
  • PAN Yongjie
Expand
  • Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Institute, Chinese Academy of Sciences, Lanzhou 730000, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. National Center for Atmospheric Research, Boulder CO 80301, USA

Received date: 2014-12-02

  Online published: 2015-06-28

摘要

针对青藏高原中部高寒草甸表层植被根系密集、 土壤有机质含量较高的特征, 利用陆面模式Noah-MP对1998年5-9月安多站水热过程进行模拟, 初步评估了对土壤温度影响较大的物理过程, 对比分析了土壤垂直分层、 有机质和根系对土壤水热、 地表能量模拟的影响.结果表明: Noah-MP模式中地表热交换、 辐射传输等6个物理过程对土壤温度的影响较大; 考虑垂直分层和有机质影响后, 模式对土壤含水量的模拟有所改善, 但浅层仍存在较大干偏差; 加入根系的影响后, 浅层土壤含水量的平均偏差显著减小, 由原来的-0.094 m3·m-3减少到-0.016 m3·m-3, 浅层土壤温度在模拟后期偏冷, 但在深层有一定改善; 同时地表感热通量和潜热通量也有明显改善, 平均偏差分别由原来的24.3 W·m-2、 -22.5 W·m-2减小到5.9 W·m-2、 1.2 W·m-2.

本文引用格式

李凯 , 高艳红 , Chen Fei , 许建伟 , 蒋盈沙 , 肖林鸿 , 李瑞青 , 潘永洁 . 植被根系对青藏高原中部土壤水热过程影响的模拟[J]. 高原气象, 2015 , 34(3) : 642 -652 . DOI: 10.7522/j.issn.1000-0534.2015.00035

Abstract

The central Qinghai-Xizang Plateau is characterized by dense roots and high soil organic carbon (SOC) in the top soil, which has significant effects on the soil hydraulic and thermal dynamics. These effects are investigated by using the Noah land surface model with multi-parameterization options (Noah-MP) which is forced by the intensive observation data at Amdo site from May to September 1998. The physical processes in Noah-MP with notable impact on soil temperature simulations are primarily assessed. Further, by investigating the different influence of stratifying soil properties, SOC and roots on soil hydraulic and thermal dynamics, surface energy simulations, results are obtained following. There are six physical processes, such as surface heat exchange and radiation transfer, have larger influence on soil temperature simulation. SOC effect optimize soil liquid water simulation slightly, yet it still possess large dry bias in the topsoil. This bias is significantly reduced from -0.094 m3·m-3 to -0.016 m3·m-3 after considering roots effect. The simulated soil temperature in topsoil is lower than observation, but it has better performance in deep soil layers. At the same time, the bias of sensible heat flux and latent heat flux is reduced from 24.3 W·m-2, -22.5 W·m-2 to 6.0 W·m-2, 1.2 W·m-2, respectively.

参考文献

[1]Qiu J. The third pole[J]. Nature, 2008, 454(24): 393-396.
[2]Cheng G, Wu T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. J Geophys Res, 2007, 112(F2): 93-104.
[3]王青霞, 吕世华, 鲍艳, 等. 青藏高原不同时间尺度植被变化特征及其与气候因子的关系分析[J]. 高原气象, 2014, 33(2): 301-312, doi: 10.7522/j.issn.1000-0534.2014.00002.
[4]Ma Y, Fan S, Ishikawa H, et al. Diurnal and inter-monthly variation of land surface heat fluxes over the central Tibetan Plateau area[J]. Theor Appl Climatol, 2004, 80: 259-273.
[5]韦志刚, 罗四维. 中国西部积雪对我国汛期降水的影响[J]. 高原气象, 1993, 12(4):347-354.
[6]徐丽娇, 李栋梁, 胡泽勇, 等. 青藏高原积雪日数与高原季风的关系[J]. 高原气象, 2010, 29(5): 1093-1101.
[7]梁玲, 李跃清, 胡豪然, 等. 青藏高原夏季感热异常与川渝地区降水关系的数值模拟[J]. 高原气象, 2013, 32(6): 1538-1545, doi: 10.7522/j.issn.1000-0534.2013.00028.
[8]Koster R D, Dirmeyer P A, Guo Z C, et al. Regions of strong coupling between soil moisture and precipitation[J]. Science, 2004, 305: 1138-1140.
[9]Zhang J, Wang W, Wei J. Assessing land-atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation[J]. J Geophys Res: Atmospheres, 2008, 113(D17): 1161-1165.
[10]Dai Y J, Shangguan W, Duan Q Y, et al. Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling[J]. J Hydrometeor, 2013, 14: 869-887.
[11]Wang G X, Li S N, Hu H C, et al. Water regime shifts in the active soil layer of the Qinghai-Tibet Plateau permafrost region, under different levels of vegetation[J]. Geoderma, 2009, 149: 280-289.
[12]Wang C T, Cao G M, Wang Q L, et al. Changes in plant biomass and species composition of alpine Kobresia meadows along altitudinal gradient on the Qinghai-Tibetan Plateau[J]. Science China: Life Sciences, 2008, 51: 86-94.
[13]陈云刚, 张宇, 王少影, 等. 高寒草甸湍流特征量的季节变化特征[J]. 高原气象, 2014, 33(3): 585-595.
[14]Chen Y Y, Yang K, Tang W J, et al. Parameterizing soil organic carbon's impacts on soil porosity and thermal parameters for Eastern Tibet grasslands[J]. Science China: Earth Sciences, 2012, 55: 1001-1011.
[15]Yang K, Koike T, Ye B, et al. Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition[J]. J Geophys Res: Atmospheres, 2005, 110(D8): 211-211.
[16]Lawrence D M, Slater A G. Incorporating organic soil into a global climate model[J]. Climate Dyn, 2008, 30: 145-160.
[17]Yang K, Chen Y Y, Qin J. Some practical notes on the land surface modeling in the Tibetan Plateau[J]. Hydrology and Earth System Sciences, 2009, 13: 687-701.
[18]马琴, 刘新, 李伟平, 等. 青藏高原夏季土壤有机质及砾石影响水热传输特性的数值模拟[J]. 大气科学, 2014, 38(2): 337-351.
[19]熊建胜, 张宇, 王少影, 等. CLM4.0土壤水分传输方案改进在青藏高原陆面过程模拟中的效应[J]. 高原气象, 2014, 33(2): 323-336, doi: 10.7522/j.issn.1000-0534.2014.00012.
[20]Darrah P R. The rhizosphere and plant nutrition-a quantitative approach[J]. Plant and Soil, 1993, 155: 1-20.
[21]Hinsinger P, Bengough A G, Vetterlein D, et al. Rhizosphere: biophysics, biogeochemistry and ecological relevance[J]. Plant and Soil, 2009, 321: 117-152.
[22]Gregory P J. Roots, rhizosphere and soil: The route to a better understanding of soil science?[J]. European Journal of Soil Science, 2006, 57: 2-12.
[23]Carminati A, Schneider C L, Moradi A B, et al. How the rhizosphere May favor water availability to roots[J]. Vadose Zone Journal, 2011, 10: 988-998.
[24]McCully M E, Boyer J S. The expansion of maize root-cap mucilage during hydration 3. Changes in water potential and water content[J]. Physiologia Plantarum, 1997, 99: 169-177.
[25]Young I M. Variation in moisture contents between bulk soil and the rhizosheath of wheat (Triticum-Aestivum L Cv Wembley)[J]. New Phytologist, 1995, 130: 135-139.
[26]Read D B, Gregory P J, Bell A E. Physical properties of axenic maize root mucilage[J]. Plant and Soil, 1999, 211: 87-91.
[27]Carminati A, Vetterlein D. Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources[J]. Annals of Botany, 2013, 112: 277-290.
[28]辛羽飞, 卞林根, 张雪红. CoLM模式在西北干旱区和青藏高原区的适用性研究[J]. 高原气象, 2006, 25(4): 567-574.
[29]张宇, 吕世华. 藏北高原陆面过程的模拟试验[J]. 大气科学, 2002, 26(3): 387-393.
[30]Tanaka K, Tamagawa I, Ishikawa H, et al. Surface energy budget and closure of the eastern Tibetan Plateau during the GAME-Tibet IOP 1998[J]. J Hydrol, 2003, 283: 169-183.
[31]Van Der Velde R, Su Z, Ek M, et al. Influence of thermodynamic soil and vegetation parameterizations on the simulation of soil temperature states and surface fluxes by the Noah LSM over a Tibetan plateau site[J]. Hydrology and Earth System Sciences, 2009, 13: 759-777.
[32]Perez P J, Castellvi F, Ibanez M, et al. Assessment of reliability of Bowen ratio method for partitioning fluxes[J]. Agricultural and Forest Meteorology, 1999, 97: 141-150.
[33]Niu G, Yang Z, Mitchell K E, et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements[J]. J Geophys Res: Atmospheres, 2011, 116(D12): 1248-1256.
[34]Gayler S, Wohling T, Grzeschik M, et al. Incorporating dynamic root growth enhances the performance of Noah-MP at two contrasting winter wheat field sites[J]. Water Resour Res, 2014, 50: 1337-1356.
[35]Cosby B J, Hornberger G M, Clapp R B, et al. A statistical exploration of the relationships of soil-moisture characteristics to the physical-properties of soils[J]. Water Resour Res, 1984, 20: 682-690.
[36]Clapp R B, Hornberger G M. Empirical equations for some soil hydraulic-properties[J]. Water Resour Res, 1978, 14: 601-604.
[37]Peters-Lidard C D, Blackburn E, Liang X, et al. The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures[J]. J Atmos Sci, 1998, 55: 1209-1224.
[38]李燕, 刘新, 李伟平. 青藏高原地区不同下垫面陆面过程的数值模拟研究[J]. 高原气象, 2012, 31(3): 581-591.
[39]Or D, Phutane S, Dechesne A. Extracellular polymeric substances affecting pore-scale hydrologic conditions for bacterial activity in unsaturated soils[J]. Vadose Zone Journal, 2007, 6: 298-305.
[40]Nash J E, Sutcliffe J V. River flow forecasting through conceptual models I-A discussion of principles[J]. J Hydrol, 1970, 10: 282-290.
[41]Moriasi D N, Arnold J G, Van Liew M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the Asabe, 2007, 50: 885-900.
[42]Xue Y K, Vasic R, Janjic Z, et al. The impact of spring subsurface soil temperature anomaly in the western U.S. on North American summer precipitation: A case study using regional climate model downscaling[J]. J Geophys Res: Atmospheres, 2012, 117: 90-100.
[43]Wu L, Zhang J. Strong subsurface soil temperature feedbacks on summer climate variability over the arid/semi-arid regions of East Asia[J]. Atmos Sci Lett, 2014, 15: 307-313.
[44]Yang K, Koike T, Ishikawa H, et al. Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization[J]. J Appl Meteor Climatol, 2008, 47: 276-290.
[45]Li Yuan, Sun Rui, Liu Shaomin. Vegetation physiological parameter setting in the Simple Biosphere model 2 (SiB2) for alpine meadows in the upper reaches of Heihe river[J]. Scince China: Earth Science, 2014, 58: 755-769.
[46]杨梅学, 姚檀栋, 何元庆. 青藏高原土壤水热分布特征及冻融过程在季节转换中的作用[J]. 山地学报, 2002, 20(5): 553-558.
文章导航

/