基于槽的客观识别方法, 提出南支槽强度定义, 利用NCEP/NCAR再分析资料500 hPa高度场识别了19532012年冬半年逐日南支槽分布, 利用线性趋势、 Mann-Kendall突变检测和小波分析等分析了近60年南支槽的气候及其变化特征.结果表明: 南支槽年平均活动频次为46.4次, 活动最频繁区位于青藏高原中部南侧(90°E-92.5°E), 强度自西向东减弱; 1月和5月的活动频次最高, 1月和2月的强度最大; 近60年南支槽活动频次有增加趋势, 每年平均增加0.12次, 在1960年前后发生突变, 之前年平均为39.8次, 之后年平均为47.5次; 最显著周期为7年.对南支槽不同位置的整层水汽输送通量合成分析表明, 南支槽前为水汽输送异常大值区, 该水汽输送大值区随南支槽东移而东移.
By using the 500 hPa geopotential height of NCEP/NCAR reanalysis data from 1953 to 2012, based on the objective identify method of trough axis, the trough axis intensity index is described. The daily southern branch trough (SBT) in the period from October to the following May is identified, and the climatology of SBT are analyzed with linear trend, Mann-Kendall test and wavelet analysis. The result shows that SBT appears 46.4 times per year, and the most frequent activities area is located in the south central of the Qinghai-Xizang Plateau (about 90°E92.5°E). The intensity of SBT diminished from west to east. SBT behaves most frequently in January and May, and behaves most strongly in January and February. The frequency of the SBT has an insignificant increasing trend for about increasing 0.12 times per year in recent 60 years. The Mann-Kendall test shows an abrupt change occurred in 1960, the annual average 39.8 times before, and 47.5 times the average annual after. The most significant period of SBT is 7-year cycle. Different positions on the SBT of whole levels water vapor transport flux synthesis analysis showed that the water vapor transport large area locates eastside of the SBT and moves eastward with the SBT.
[1]索渺清. 南支西风槽建立、 传播和演变特征及其对中国天气气候的影响[D]. 北京: 中国气象科学研究院, 2008.
[2]Yeh Tucheng. The circulation of the high troposphere over China in winter of 1945-1946[J]. Tellus, 1950, 2: 173-183.
[3]Chaudhury A M. On the vertical distribution of wind and temperature over Indo-Pakistan along the meridian 76°E in winter[J]. Tellus, 1950, 2: 56-62.
[4]Ramage C S. The relationship between the atmospheric circulation and the normal weather of the southern Asia and the western Pacific in winter[J]. J Meteor, 1952, 9: 403-408.
[5]丁一汇. 高等天气学[M]. 第2版. 北京: 气象出版社, 2005.
[6]索渺清,丁一汇. 冬半年副热带南支西风槽结构和演变特征研究[J]. 大气科学, 2009, 33(3): 425-442.
[7]秦剑, 琚建华, 解明恩, 等. 低纬高原天气气候[M]. 北京: 气象出版社, 1997.
[8]秦剑, 潘里娜, 石鲁平. 南支槽与强冷空气结合对云南冬季天气的影响[J]. 气象, 1991, 17(3): 39-43.
[9]段旭, 陶云, 许美玲, 等. 西风带南支槽对西南天气的影响[J]. 高原气象, 2012, 31(4): 1059-1065.
[10]张永莉, 范广洲, 周定文, 等. 春季南支槽变化特征及其与降水和大气环流的关系[J]. 高原气象, 2014, 33(1): 97-105, doi: 10.7522/j.issn.1000-0534.2012.00179.
[11]张腾飞, 鲁亚斌, 张杰, 等. 一次低纬高原地区大到暴雪天气过程的诊断分析[J]. 高原气象, 2006, 25(4): 697-703.
[12]池再香, 邱斌, 康学良, 等. 一次南支槽背景下地形对贵州水城南部特大暴雨的作用[J]. 大气科学学报, 2011, 34(6): 708-716.
[13]林志强, 假拉, 薛改萍, 等. 1980-2010年西藏高原大到暴雪的时空分布和环流特征[J]. 高原气象, 2014, 33(4): 900-906, doi: 10.7522/j.issn.1000-0534.2013.00069.
[14]李坚辉, 谢巨伦, 吴阳. 3-5月粤西地区南支槽降水分析[J]. 广东气象, 2000, 22(1): 5-6,14.
[15]梁志和, 黄香杏. 春季南支槽与广西暴雨关系的研究[J]. 广西气象, 1995, 16(1): 8-15.
[16]魏凤英. 现代气候统计诊断与预测技术[M]. 第2版.北京: 气象出版社, 2007.
[17]Herrera R G, David G P, Emiliano H M, et al. Influence of the North Atlantic Oscillation on the Canary Islands Precipitation[J]. J Climate, 2001, 14(2): 3889-3903.
[18]Peter Knippertz. A simple identification scheme for upper-level troughs and its application to winter precipitation variability in Northwest Africa[J]. J Climate, 2004, 17(6): 1411-1418.