利用NCEP 格点再分析资料和WRF模式输出的高分辨率资料、 自动站降水资料、 雷达资料对2010 年8月1416日发生在重庆的一次大暴雨过程进行了数值模拟和诊断分析.结果表明: 此次暴雨过程分为两个阶段, 降水系统主要有两个: 第一阶段的主要降水系统是低空切变线; 第二阶段的主要降水系统是低空切变线和850 hPa西南低涡, 并且第二个阶段内的降水量较大、 持续时间也较长.风垂直廓线的时间演变表明, 暴雨发生、 发展过程中, 中低层强西南风风速的下传和低层切变辐合的存在对中尺度对流系统的增强有着重要的作用; 数值模拟分析显示, 第一阶段, 弱的冷平流影响暴雨区, 在低空切变线的作用下, 引起气团在水平方向辐合, 触发中尺度对流系统的发生、 发展; 第二阶段, 中高层强的冷空气倾入降水区, 850 hPa低涡生成后东移至重庆东北地区, 其低涡附近的垂直上升运动与700 hPa切变线附近的上升运动相耦合, 强迫抬升中低层暖湿空气并再次触发降水区域的中尺度对流系统.
With NCEP reanalysis data、 WRF model simulated high resolution output data、 automatic station precipitation data and radar data、 radar data, a diagnosing analysis and numerical simulation is made of a heavy rain in Chongqing from 14 to 16 August 2010. The result indicate that the heavy rain processes which divided two stages, has two precipitation system: the first stage of the main precipitation system is the low level shear line; The second stage of precipitation system are the low level shear line and 850 hpa of southwest vortex, and the second stage of the rainfall is larger and has longer duration. The vertical wind profile of time evolution shows that the heavy rain in the process of development, strong low-level southwest wind speed downlinking and the existence of the low-level shear convergence has a very important role for enhancement of the mesoscale convective system. The numerical simulation analysis shows that in the first phase of the heavy rain process, weak cold advection influence the rain area, under the impact of low-level shear line, cause air mass convergence in horizontal direction and trigger the mesoscale convective system development; in the second stage, the high-level strong cold air poured in precipitation area, the vertical ascending motion near the low vortex coupling interaction the upward movemen near 700 hpa shear lineafter the 850 hpa vortex eastward to Chongqing northeast area,which forces the low-level warm moist air to lifting and triggers the mesoscale convective system again.
[1]卢敬华. 西南低涡概论[M]. 北京:气象出版社, 1986.
[2]宋雯雯, 李国平. 一次高原低涡过程的数值模拟与结构特征分析[J]. 高原气象, 2011, 30(2): 267-276.
[3]黄楚惠, 李国平, 牛金龙, 等. 一次高原低涡东引发四川盆地强降水的湿螺旋度分析[J].高原气象, 2011, 30(6): 1427-1434.
[4]杨康权, 张琳, 肖递祥, 等. 四川盆地西部一次大暴雨过程的中尺度特征分析[J]. 高原气象, 2013, 32(2): 357-367, doi: 10.7522/j.issn.1000-0534.2012.00035.
[5]袁美英, 李泽春, 张小玲, 等. 中尺度对流系统和东北暴雨的关系[J]. 高原气象, 2011, 30(5): 1224-1231.
[6]矫梅燕, 李川, 李延香. 一次川东大暴雨过程的中尺度分析[J]. 应用气象学报, 2005, 16(5): 701-704.
[7]刘晓冉, 李国平. 一次东移型西南低涡的数值模拟及位涡诊断[J]. 高原气象, 2014, 33(5): 1204-1216, doi: 10.7522/j.issn.1000-0534.2013.00151.
[8]肖红茹, 顾清源, 何光碧, 等. 一次大暴雨过程中高原低涡与西南低涡相互作用机制探讨[J]. 暴雨灾害, 2009, 28(1): 15-20.
[9]黄福均. 西南低涡的合成分析[J].大气科学.1986, 10(4): 402-408.
[10]陈忠明, 徐茂良, 闵文彬, 等. 1998 年夏季西南低涡活动与长江上游暴雨[J]. 高原气象, 2003, 22(3): 162-167.
[11]于波, 林永辉. 引发川东暴雨的西南低涡演变特征个例分析[J]. 大气科学, 2008, 32(1): 142-154.
[12]顾清源, 肖递祥, 祁生秀. 西南低涡生成过程中形成“7·18达州大暴雨”的机理分析[J]. 四川气象, 2005, 93(3): 1-4.
[13]周国兵, 沈桐立, 韩余. 台风对西南低涡影响的数值模拟与诊断个例分析[J]. 气象科学, 2006, 26(6): 621-626.
[14]陈栋, 李跃清, 黄荣辉. 在“鞍”型大尺度环流背景下西南低涡发展的物理过程分析及其对川东暴雨发生的作用[J]. 大气科学, 2007, 31(2): 186-201.
[15]王兴荣, 郑媛媛, 高守亭. 中纬度突发性暴雨的可能先兆特征[J]. 热带气象学报, 2006, 22(6): 312-614.
[16]黄明策, 李江南, 农孟松, 等. 一次华南西部低涡切变特大暴雨的中尺度特征分析[J].气象学报, 2010, 68(5): 0748-0762.
[17]赵宇, 崔晓鹏, 高守亭. 引发华北特大暴雨过程的中尺度对流系统结构特征研究[J]. 大气科学, 2011, 35(5): 946-962.