论文

交通限行对细颗粒物浓度及其谱分布的影响

  • 赵素平 ,
  • 余晔 ,
  • 殷代英 ,
  • 刘娜 ,
  • 何建军
展开
  • 中国科学院寒区旱区环境与工程研究所 寒旱区陆面过程与气候变化重点实验室, 兰州 730000;2. 中国科学院大学, 北京 100049;3. 中国科学院寒区旱区环境与工程研究所 沙漠与沙漠化重点实验室, 兰州 730000;4. 青海省气象局 人工影响天气办公室, 西宁 810001;5. 南开大学 环境科学与工程学院, 天津 300071

收稿日期: 2013-08-29

  网络出版日期: 2015-06-28

基金资助

中国科学院百人计划项目(29O827631)

Effect of Traffic Restriction on Fine Particle Concentrations and Their Size Distributions

  • ZHAO Suping ,
  • YU Ye ,
  • YIN Daiying ,
  • LIU Na ,
  • HE Jianjun
Expand
  • Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold & Arid Regions Environmental & Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Key Laboratory of Desert and Desertification, Cold & Arid Regions Environmental & Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;4. Weather Modification Office, Qinghai Provincial Meteorological Bureau, Xining 810001, China;5. College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China

Received date: 2013-08-29

  Online published: 2015-06-28

摘要

采用电迁移率粒径谱仪SMPS 3936对颗粒物数浓度及其谱分布进行了实时监测, 对2013年兰州市国际马拉松赛交通管制期间细颗粒物浓度及其谱分布特征开展研究, 并通过多元对数正态分布拟合和主成分分析方法分别对数浓度谱特征及其影响因素进行了分析, 以阐明2013年兰州国际马拉松赛期间交通管制对细颗粒物浓度及其谱特征的影响.气象条件相似的交通限行期间, 交通限行日50~100 nm, 100~200 nm和200~500 nm粒径段颗粒物数浓度均较正常周六有所降低, 特别是50~200 nm粒径段颗粒物表现最为显著, 在此期间, 交通限行日50~100 nm和100~200 nm粒径段平均颗粒物数浓度分别为2567.5±807.4 cm-3和1567.8±193.8 cm-3, 分别较正常周六相应时段低60.2%和67.2%.交通限行对颗粒物数浓度的影响主要集中在107 nm为峰值粒径的积聚模态附近, 而气象条件对10~300 nm粒径段颗粒物数浓度均有较显著的影响, 最大影响在80 nm附近.

本文引用格式

赵素平 , 余晔 , 殷代英 , 刘娜 , 何建军 . 交通限行对细颗粒物浓度及其谱分布的影响[J]. 高原气象, 2015 , 34(3) : 777 -785 . DOI: 10.7522/j.issn.1000-0534.2014.00017

Abstract

The air pollution characteristics during the 2013 Lanzhou International Marathon were investigated by measuring particles concentrations in the size range 10 to 600 nm using a TSI particle sizer from 1 to 30 June, 2013 in urban Lanzhou. The particle number concentrations in size ranges 50~100 nm, 100~200 nm and 200~500 nm on traffic-restricted day were significantly lower than those on normal Saturday during the temporary traffic control period with comparable meteorological conditions (11:00 (Beijing Time, hereafter the same)14:00), especially fine particles with diameters ranging from 50 to 200 nm. For the period with similar meteorological conditions (11:00-14:00), the mean particle number concentrations in the size ranges 50~100 nm and 100~200 nm were 2567.5±807.4 cm-3 and 1567.8±193.8 cm-3, respectively, on 15 June (traffic-restricted day), which is 60.2% and 67.2% lower than those on 22 June (normal saturday). The impacts of traffic restriction on particle number concentration mainly concentrated on accumulation modes with peak in 107 nm. Meteorological conditions had significant influence on particle number concentration in the size range 10~300 nm with a larger effect in 80 nm.

参考文献

[1]United Nations Environment Program (UNEP). Urban air pollution[OB/OL]. http://www.unep.org/urban_environment/issues/urban_air.asp(accessed 14.12.10).
[2]Liu H, He K. Traffic optimization: A new way for air pollution control in China's urban areas[J]. Environ Sci Technol, 2012, 46(11): 5660-5661.
[3]Zhang K M, Wexler A S, Zhu Y F, et al. Evolution of particle number distribution near roadways. Part II: the 'Road-to-Ambient' process[J]. Atmos Environ, 2004, 38(38): 6655-6665.
[4]Zhang K M, Wexler A S, Niemeier D A, et al. Evolution of particle number distribution near highways. Part iii: Traffic analysis and on-road size resolved particulate emission factors[J]. Atmos Environ, 2005, 39(22): 4155-4166.
[5]Boogaard H, Montagne D R, Brandenburg A P, et al. Comparison of short-term exposure to particle number, PM<sub>10</sub> and soot concentrations on three (sub) urban locations[J]. Sci Total Environ, 2010, 408(20): 4403-4411.
[6]Cheng Y H, Chang H P, Hsieh C J. Short-term exposure to PM<sub>10</sub>, PM<sub>2.5</sub>, ultrafine particles and CO<sub>2</sub> for passengers at an intercity bus terminal[J]. Atmos Environ, 2011, 45(12): 2034-2042.
[7]Wang S, Zhao M, Xing J, et al. Quantifying the air pollutants emission reduction during the 2008 Olympic Games in Beijing[J]. Environ Sci Technol, 2010, 44(7): 2490-2496.
[8]Hao N, Valks P, Loyola D, et al. Space-based measurements of air quality during the World Expo 2010 in Shanghai[J]. Environ Res Lett, 2011, 6(4): doi: 10.1088/1748-9326/6/4/044004.
[9]Buonanno G, Lall A A, Stabile L. Temporal size distribution and concentration of particles near a major highway[J]. Atmos Environ, 2009, 43(5): 1100-1105.
[10]Zhu Y F, Hinds W C, Kim S, et al. Study of ultrafine particles near a major highway with heavy-duty diesel traffic[J]. Atmos Environ, 2002, 36(27): 4323-4335.
[11]Hussein T, Puustinen A, Aalto P P, et al. Urban aerosol number size distributions[J]. Atmos Chem Phys, 2004, 4(2): 391-411.
[12]徐鑫强, 王鑫, 黄建平. 张掖及兰州榆中地区沙尘气溶胶粒子谱分布的观测研究[J]. 高原气象, 2011, 30(1): 208-216.
[13]陈雷华, 余晔, 陈晋北, 等. 2001-2007年兰州市主要大气污染物污染特征分析[J]. 高原气象, 2010, 29(6): 1627-1633.
[14]张兴华, 张武, 陈艳, 等. 自定义气溶胶模式下兰州及周边地区气溶胶光学厚度的反演[J]. 高原气象, 2013, 32(2): 402-410, doi: 10.7522/j.issn.1000-0534.2012.00039.
[15]胡蝶, 张镭, 王宏斌. 黄土高原干旱半干旱地区气溶胶光学厚度遥感分析[J]. 高原气象, 2013, 32(3): 654-664, doi: 10.7522/j.issn.1000-0534.2012.00062.
[16]王振海, 张武, 史晋森, 等. 半干旱地区气溶胶散射和吸收特性的观测研究[J]. 高原气象, 2012, 31(5): 1424-1431.
[17]余晔, 夏敦胜, 陈雷华, 等. 兰州市PM<sub>10</sub>污染变化特征及其成因分析[J]. 环境科学, 2010, 31(1): 22-28.
[18]Witte J C, Schoeberl M R, Douglass A R, et al. Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics[J]. Geophys Res Lett, 2009, 36(17): L17803, doi:10.1029/2009GL039236.
[19]Shen J, Tang A, Liu X, et al. Impacts of pollution controls on air quality in Beijing during the 2008 Olympic Games[J]. J Environ Qual, 2011, 40(1): 37-45.
[20]Cheng Y F, Heintzenberg J, Wehner B, et al. Traffic restrictions in Beijing during the Sino-African Summit 2006: aerosol size distribution and visibility compared to long-term in situ observations[J]. Atmos Chem Phys, 2008, 8(24): 7583-7594.
[21]张镭, 陈长和, 田良, 等. 兰州市区大气污染及其治理的研究[J]. 兰州大学学报: 自然科学版, 1994, 30(1): 137-141.
[22]Hussein T, Martikainen J, Junninen H, et al. Observation of regional new particle formation in the urban atmosphere[J]. Tellus B, 2008, 60(4): 509-521.
[23]Wehner B, Wiedensohler A. Long term measurements of submicrometer urban aerosols: Statistical analysis for correlations with meteorological conditions and trace gases[J]. Atmos Chem Phys, 2003, 3(3): 867-879.
[24]Maricq M M, Podsiadlik D H, Chase R E. Gasoline vehicle particle size distributions: Comparison of steady state, FTP, and US06 Measurements[J]. Environ Sci Technol, 1999, 33(12): 2007-2015.
[25]Ristovski Z D, Morawska L, Bofinger N D, et al. Submicrometer and supermicrometer particulate emissions from spark ignition vehicles[J]. Environ Sci Technol, 1998, 32(24): 3845-3852.
[26]Harris J S, Maricq M M. Signature size distributions for diesel and gasoline engine exhaust particulate matter[J]. J Aerosol Sci, 2001, 32(6): 749-764.
[27]杨柳, 吴烨, 宋少洁, 等. 不同交通状况下道路边大气颗粒物数浓度粒径分布特征[J]. 环境科学, 2012, 33(3): 694-700.
文章导航

/