论文

台风“莫拉克”登陆过程的闪电活动与雷达回波特征

  • 温颖 ,
  • 赵阳 ,
  • 赵果 ,
  • 孔祥贞
展开
  • 中国科学院寒区旱区环境与工程研究所 寒旱区陆面过程与气候变化重点实验室, 兰州 730000;2. 中国科学院大学, 北京 100049;3. 中国科学院平凉陆面过程与灾害天气观测研究站, 平凉 744000

收稿日期: 2014-12-29

  网络出版日期: 2015-06-28

基金资助

国家重点基础研究发展计划(2014CB441404); 国家自然科学基金项目(41275005, 41175001, 41005003)

Characteristics of Lightning Activity and Radar Reflectivity during Typhoon ‘Morakot’ Landfall

  • WEN Ying ,
  • ZHAO Yang ,
  • ZHAO Guo ,
  • KONG Xiangzhen
Expand
  • Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environment Research Institute, Chinese Academy of Science, Lanzhou 730000, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Pingliang Land Surface Process & Severe Weather Research Station, Chinese Academy of Sciences, Pinliang 744000, China

Received date: 2014-12-29

  Online published: 2015-06-28

摘要

利用全球闪电定位网WWLLN(World Wide Lightning Location Network)资料和中国气象局热带气旋资料中心最佳路径数据集的台风资料, 并结合福建省气象局新一代天气雷达反射率资料以及NCEP/NCAR的再分析格点资料, 对台风"莫拉克"在中国台湾和福建两次登陆过程中的闪电活动和雷达回波特征进行了分析.结果表明, 闪电多发生在台风的外雨带, 中心区域和内雨带闪电数量较少, 第一次登陆过程中闪电数量较多, 第二次登陆过程中闪电数量较少.6 km高度上, 面积较大的回波后侧或外侧观测到闪电发生, 在回波形成初期闪电数量较少, 在面积和强度较稳定的时期闪电数量增加, 并且闪电数量与回波的最大顶高呈正相关.闪电的发生受到台风自身垂直运动和地形抬升的共同影响, 500 hPa上气旋性风场流入垂直上升区后部的陆地出现闪电密集区, 并且垂直中心的位置与强度对闪电分布的位置与数量有明显影响.

本文引用格式

温颖 , 赵阳 , 赵果 , 孔祥贞 . 台风“莫拉克”登陆过程的闪电活动与雷达回波特征[J]. 高原气象, 2015 , 34(3) : 832 -841 . DOI: 10.7522/j.issn.1000-0534.2015.0036

Abstract

Using the lightning data from World Wide Lightning Location Network (WWLLN), typhoon track and intensity data from the Best Track Data Sets (CMA), radar reflectivity of the weather radar from Fujian Meteorological Administration and the NCEP/NCAR Global Reanalysis Data, to analyze the characteristics of lightning activity and radar reflectivity in typhoon ‘Morakot’ (0908) during the two processes of landfall in Taiwan and Fujian. The analysis showed that more lightning occurred in the outer rainband and less lightning occurred in the central area and inner rainband. The first landfall in Taiwan caused more lightning than the second landfall in Fujian. At 6 km height, lightning was prone to occur in the rear or round of the central area where the reflectivity value was high and the area was large. The lightning number was low at the beginning of echo formation, and increased when the convective systems developed stably. During the period of typhoon entered into Taiwan Strait and made landfall in Fujian, the maximum echo height and lightning number had a positive correlation.The lightning activity was affected by both the vertical movement and topography. Lightning concentrated on the land at the rear side area of cyclonic horizontal wind flowed into the vertical upflow central areas on 500 hPa. The position and intensity of the vertical upflow central areas influenced the position and number of lightning activity.

参考文献

[1]陈联寿, 孟智勇. 我国热带气旋研究十年进展[J]. 大气科学, 2001, 25(3): 420-432.
[2]巩崇水, 曾淑玲, 王嘉媛, 等. 近 30 年中国雷暴天气气候特征分析[J]. 高原气象, 2013, 32(5): 1442-1449, doi: 10.7522/j.issn.1000-0534.2012.00134.
[3]袁铁, 郄秀书. 卫星观测到的我国闪电活动的时空分布特征[J]. 高原气象, 2004, 23(4): 488-494.
[4]马明, 陶善昌, 祝宝友, 等. 卫星观测的中国及周边地区闪电密度的气候分布[J]. 中国科学: 地球科学, 2004, 34(4): 298-306.
[5]Black R A, Hallett J. Observations of the distribution of ice in hurricanes[J]. J Atmos Sci, 1986, 43(8): 802-822.
[6]Black R A, Hallett J. Electrification of the hurricane[J]. J Atmos Sci, 1999, 56(12): 2004-2028.
[7]Molinari J, Moore P K, Idone V P, et al. Cloud-to-ground lightning in Hurricane Andrew[J]. J Geophys Res: Atmospheres(1984-2012), 1994, 99(D8): 16665-16676.
[8]Molinari J, Moore P, Idone V. Convective structure of hurricanes as revealed by lightning locations[J]. Mon Wea Rev, 1999, 127(4): 520-534.
[9]雷小途, 张义军, 马明. 西北太平洋热带气旋的闪电特征及其与强度关系的初步分析[J]. 海洋学报, 2009, 31(4): 29-38.
[10]潘伦湘, 郄秀书, 刘冬霞, 等. 西北太平洋地区强台风的闪电活动特征[J]. 中国科学: 地球科学, 2010, 40(2): 252-260.
[11]Price C, Asfur M, Yair Y. Maximum hurricane intensity preceded by increase in lightning frequency[J]. Nature Geoscience, 2009, 2(5): 329-332.
[12]Abarca S F, Corbosiero K L, Vollaro D. The World Wide Lightning Location Network and convective activity in tropical cyclones[J]. Mon Wea Rev, 2011, 139(1): 175-191.
[13]Zhang W, Zhang Y, Zheng D, et al. Lightning distribution and eyewall outbreaks in tropical cyclones during landfall[J]. Mon Wea Rev, 2012, 140(11): 3573-3586.
[14]Carey L D, Murphy M J, McCormick T L, et al. Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system[J]. J Geophys Res: Atmospheres(1984-2012), 2005, 110, D03105, doi:10.1029/2003JD004371.
[15]冯桂力, 郄秀书, 袁铁. 雹暴的闪电活动特征与降水结构研究[J]. 中国科学(D辑), 2007, 37(1): 123-132.
[16]袁铁, 郄秀书. 基于 TRMM 卫星对一次华南飑线的闪电活动及其与降水结构的关系研究[J]. 大气科学, 2010 (1): 58-70.
[17]吴学珂, 袁铁, 刘冬霞, 等. 山东半岛一次强飑线过程地闪与雷达回波关系的研究[J]. 高原气象, 2013, 32(2): 530-540, doi: 10.7522/j.issn.1000-0534.2012.00050.
[18]王改利, 赵翠光, 刘黎平, 等. 雷达回波外推预报的误差分析[J]. 高原气象, 2013, 32(3): 874-883, doi: 10.7522/j.issn.1000-0534.2012.00081.
[19]杨美荣, 袁铁, 郄秀书, 等. 西北太平洋热带气旋的闪电活动、 雷达反射率和冰散射信号特征分析[J]. 气象学报, 2011, 69(2): 370-380.
[20]赵鹏国, 周筠瑁, 邓德文. 雷暴微物理过程对电活动影响的数值模拟研究[J]. 高原气象, 2013, 32(3): 884-893, doi: 10.7522/j.issn.1000-0534.2012.00082.
[21]Reinhart B, Fuelberg H, Blakeslee R, et al. Understanding the relationships between lightning, cloud microphysics, and airborne radar-derived storm structure during hurricane Karl (2010)[J]. Mon Wea Rev, 2014, 142(2): 590-605.
[22]Lay E H, Holzworth R H, Rodger C J, et al. WWLL global lightning detection system: Regional validation study in Brazil[J]. Geophys Res Lett, 2004, 31(3): L03102, doi:10.1029/2003GL018882.
[23]Dowden R L, Brundell J B, Rodger C J. VLF lightning location by time of group arrival (TOGA) at multiple sites[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64(7): 817-830.
[24]Abarca S F, Corbosiero K L, Galarneau T J. An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth[J]. J Geophys Res: Atmospheres(1984-2012), 2010, 115, D18206, doi: 10.1029/2009JD013411.
[25]Ying M, Zhang W, Yu H, et al. An overview of the China Meteorological Administration tropical cyclone database[J]. J Atmos Ocean Technol, 2014, 31(2): 287-301.
[26]肖艳姣, 刘黎平. 新一代天气雷达网资料的三维格点化及拼图方法研究[J]. 气象学报, 2006, 64(5): 647-657.
[27]赵果. 黑河流域降水粒子滴谱特性分析及偏振多普勒雷达测量降雨的改进[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2009.
[28]爱鸣, 高珊. 0908 号台风 “莫拉克” 异常路径及其对台湾海峡两岸强降水的影响[J]. 台湾海峡, 2011, 30(2): 151-157.
[29]周立, 李青青, 范轶, 等. 台风"莫拉克"、 天鹅和艾涛的引导流及相互作用研究[J]. 中国海洋大学学报: 自然科学版, 2011, 41(6): 23-29.
[30]郭凤霞, 刘冰, 白翎, 等. 中低层水平风速对闪电和降水影响的数值模拟[J]. 高原气象, 2014, 33(4): 1135-1145, doi: 10.7522/j.issn.1000-0534.2013.00004.
[31]Keighton S J, Bluestein H B, MacGorman D R. The evolution of a severe mesoscale convective system: Cloud-to-ground lightning location and storm structure[J]. Mon Wea Rev, 1991, 119(7): 1533-1556.
[32]Zipser E J, Lutz K R. The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability?[J]. Mon Wea Rev, 1994, 122(8): 1751-1759.
[33]沈瑾, 楚荣忠, 赵果, 等. 台风"莫拉克"的偏振参量演变分析[J]. 高原气象, 2011, 30(3): 809-816.
[34]Wen Y, Zhao Y, Kong X. Lightning activity in typhoon Morakot (0908)[C]. Lightning Protection (ICLP), 2014 International Conference o. IEEE, 2014: 1291-1298.
文章导航

/