为了满足准确分析闪电通道三维发展特征和闪电先导相互作用的需求, 建立了一种利用双站摄像资料重建闪电三维通道的方法, 从两幅在不同位置拍摄到的闪电二维图像上分别获取通道的坐标序列, 利用空间立体几何原理, 寻找两组序列中互相匹配的坐标, 再由匹配的坐标序列重建出最终的闪电三维通道.通过对一次实际观测个例的重建与分析, 验证了重建算法在实际观测中的可靠性, 并对闪电通道的三维长度和二维长度进行了对比, 发现两者差异可达2倍以上, 充分说明了闪电三维特征分析的重要性.
A single two-dimensional (2D) image of lightning channel cannot reflect the real spatial distribution of three-dimensional (3D) lightning channel and is insufficient to meet the needs of accurate analysis on the 3D lightning channel development characteristics and on the interaction between different leaders. A reconstruction method of 3D lightning channel from two-station video observation is established. The 2D coordinate sequence of lightning channel is obtained from each 2D lightning image captured at different positions. The theory of solid geometry is used to match the coordinates from different sequences. Then the 3D lightning channel is reconstructed by the matched coordinates. This method is verified feasibly and reliably by reconstruction and comparative analysis of a real observation case. Finally the 2D lengths and 3D lengths of lightning channels are also compared, and the 3D channel length can be over two times of the 2D channel length, which fully illustrates the importance of the analysis on the 3D lightning channel characteristics.
[1]王道洪, 郄秀书, 郭昌明. 雷电与人工引雷[M]. 上海: 上海交通大学出版社, 2000: 1.
[2]Rakov V A, Uman M A. Lightning Physics and Effects[M]. Cambridge: Cambridge University Press, 2003: 108-116.
[3]王才伟, 刘欣生, 董万胜, 等. 人工触发闪电通道的发光特征[J]. 高原气象, 1998, 17(1): 10-23.
[4]王才伟, 张义军, 肖庆复, 等. 空中触发闪电的下行先导及其接地行为[J]. 高原气象, 1998, 17(1): 24-33.
[5]Lü Weitao, Chen Luwen, Zhang Yang, et al. Characteristics of unconnected upward leaders initiated from tall structures observed in Guangzhou[J]. J Geophys Res, 2012, 117, D19211, doi:10.1029/2012JD018035.
[6]赵阳, 郄秀书, 陈明理, 等. 人工触发闪电中的M分量特征[J]. 高原气象, 2011, 30(2): 508-517.
[7]曹冬杰, 田立言, 肖瑾, 等. 闪电多参量高速大容量实时数据采集、 显示和分析系统[J]. 高原气象, 2011, 30(2): 518-524.
[8]章涵, 王道洪, 吕伟涛, 等. 基于雷声到达时间差的单站闪电通道三维定位系统[J]. 高原气象, 2012, 31(1): 209-217.
[9]王彦辉, 张广庶, 张彤, 等. 闪电VHF辐射源三维定位系统仪器误差处理[J]. 高原气象, 2012, 31(5): 1407-1413.
[10]武斌, 张广庶, 王彦辉, 等.双接地负地闪VHF辐射源放电通道和光学通道的对比分析[J]. 高原气象, 2013, 32(2): 519-529, doi: 10.7522/j.issn.1000-0534.2012.00049.
[11]Isikawa H. Nature of lightning discharges as origins of atmospherics[J]. Proc Res Inst Res Atmospherics, Nagoya University, 1961, 8A: 1-247.
[12]Nagai Y, Kawamata S, Edano Y. Observation of preceding leader and its downward traveling velocity in Utsunomiya district[J]. Res Lett Atmos Electr, 1982, 2: 53-56.
[13]Boyle J S, Orville R E. Return stroke velocity measurements in multistroke lightning flashes[J]. J Geophys Res, 1976, 81: 4461-4466.
[14]Idone V P, Orville R E. Lightning return stroke velocities in the Thunderstorm Research International Program (TRIP)[J]. J Geophys Res, 1982, 87: 4903-4916.
[15]Hubert P, Mouget G. Return stroke velocity measurements in two triggered lightning flashes[J]. J Geophys Res, 1981, 86: 5253-5261.
[16]Idone V P, Orville R E. Correlated peak relative light intensity and peak current in triggered lightning subsequent return strokes[J]. J Geophys Res, 1985, 90: 6159-6164.
[17]Markus H. 3D reconstruction and geographical referencing of lightning discharges[D]. Graz: Graz University of Technology, 2008: 1-120.
[18]Liu Y C. A feasibility study on the three-dimensional reconstruction of high voltage and lightning discharge channels using digital images[D]. Johannesburg: University of the Witwatersrand, 2012: 1-169.
[19]Liu Y C, Rapson A J, Nixon K J. Laboratory investigation into reconstructing a three dimensional model of a discharge channel using digital images[C]. South African Universities' Power Engineering Conference (SAUPEC)-Stellenbosch, South Africa, 2009, 18: 83.