论文

风观测对障碍物距离要求的定量评估

  • 田东霞 ,
  • 郭建侠 ,
  • 关彦华 ,
  • 陈挺 ,
  • 薛筝筝
展开
  • 中国气象局气溶胶与云降水重点开放实验室 南京信息工程大学, 南京 210044;2. 中国气象局气象探测中心, 北京 100081;3. 河北省气象局, 石家庄 050011;4. 成都信息工程学院, 成都 610225

收稿日期: 2014-01-09

  网络出版日期: 2015-06-28

基金资助

公益性行业(气象)科研专项(GYHY201106049)

Quantitative Evaluation on Requirement of Obstacle Distance for Wind Observation

  • TIAN Dongxia ,
  • GUO Jianxia ,
  • GUAN Yanhua ,
  • CHEN Ting ,
  • XUE Zhengzheng
Expand
  • Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China;2. Meteorological Observation Center of China Meteorological Administration, Beijing 100081, China;3. Hebei Province Meteorological Bureau, Shijiazhuang 050011, China;4. Chengdu University of Information Technology, Chengdu 610225, China

Received date: 2014-01-09

  Online published: 2015-06-28

摘要

为定量评估气象站风观测对障碍物的距离要求, 通过流体力学模式(Computational Fluid Dynamics, CFD)对单体建筑物进行了敏感性试验分析, 并用河北沽源构筑物观测试验对模拟结果进行了验证.结果表明: (1)按照来流风速90%进行风速影响范围评估, 障碍物对风速的影响距离为迎风面上3倍建筑物高度, 背风面为28.5倍建筑物高度; 按风向偏差10°进行风向影响范围评估时, 障碍物对风向的影响距离为迎风面1.4倍建筑物高度, 背风面为6.8倍建筑物高度, 侧风向为2.8倍建筑物高度, 垂直方向上为4倍建筑物高度.(2)对来流风速、 建筑物厚度、 建筑物高度、 建筑物视宽角、 来流风向的敏感性分析表明, 10 m风速、 风向测量对障碍物距高比的要求随背景风速的增大而增大; 随着建筑物厚度的增大, 10 m风速、 风向观测对距高比的要求减小; 当障碍物高度 <6 m时, 对10 m风速、 风向观测影响不明显, 当障碍物高度 >6 m时, 对距高比的要求随障碍物高度的增加而减小; 随着建筑物视宽角的增大, 10 m风速、 风向观测对距高比的要求增大; 来流风向与建筑物呈45° 时, 风速影响区域增大, 风向影响区域水平方向增大、 侧方向减小.

本文引用格式

田东霞 , 郭建侠 , 关彦华 , 陈挺 , 薛筝筝 . 风观测对障碍物距离要求的定量评估[J]. 高原气象, 2015 , 34(3) : 870 -880 . DOI: 10.7522/j.issn.1000-0534.2014.00052

Abstract

In order to evaluate the requirements of the obstacle distance from the anemometer, a set of numerical simulations and sensitivity experiments on an isolated building by Computational Fluid Dynamics (CFD) model were carried out with verifying by the field experiment at Guyuan, Hebei Province. The results indicate that: (1) The range of 90% inflow speed is 3 times the height of the building in windward side, and 28.5 times of it in leeward side. Meanwhile, the range of 10 deviation to inflow wind direction is 1.4 times the height of the building in windward side, 6.8 times of it in leeward side, 2.8 times of it in lateral side and 4 times of it in vertical height. (2)By the sensitivity analysis of inflow speeds, building thickness, building height, building angular width and inflow directions, the requirements for the ratios of the distance to the height of building increase with the increment of the inflow speeds, while that will be decreased with the increase of the thickness of the building. If the height of the obstacle below than 6 m, it seems not significantly to disturb the wind speed and direction at 10 m. If the height of the obstacles more than 6 m, the requirements of the ratios of the observed point distance to the height of the building will be reduced with the increase of the height of the building, and be enlarged with the increase of the building angular width. When the inflow cross over the building by 45°, the influenced scope of wind speed will be enlarged, as well as the horizontal affected area of wind direction, but the scope of lateral side for wind direction will be reduced.

参考文献

[1]刘雪锋, 江滢, 任国玉, 等. 河北城市化和观测环境改变对地面风速观测资料序列的影响[J]. 高原气象, 2009, 28(4): 433-439.
[2]张爱英, 任国玉, 郭军, 等. 近30年我国高空风速变化趋势分析[J]. 高原气象, 2009, 28(3): 680-687.
[3]李书严, 陈洪滨, 李伟. 城市化对北京地区气候的影响[J]. 高原气象, 2008, 27(5): 1102-1110.
[4]徐琼芳, 高庆九, 胡进甫, 等. 潜江站迁站前后气候资料的均一性检验[J]. 高原气象, 2011, 30(6): 1710-1715.
[5]刘罡, 孙鉴泞, 王霄雪. 高大建筑物影响城市粗糙副层流场特征的数值研究[J]. 气象科学, 2012, 32(4): 385-394.
[6]徐阳阳, 刘树华, 胡非, 等. 北京城市化发展对大气边界层特性的影响[J]. 大气科学, 2009, 33(4): 859-867.
[7]刘红年, 苗世光, 蒋维楣, 等. 城市建筑动力学效应对流边界层影响的敏感性试验[J]. 气象科学, 2008, 28(6): 599-605.
[8]王毅荣, 张存杰. 河西走廊风速变化及风能资源研究[J]. 高原气象, 2006, 25(6): 1196-1202.
[9]申辉, 何慧根, 郝丽, 等. 四川新津机场地面风场的特征分析[J]. 高原气象, 2011, 30(2): 545-551.
[10]World Meteorological Organization. Commission for Instruments and Methods of Observation[R]. 15<sup>th</sup> session.WMO-No.1064, Helsinki, 2010.
[11]气象设施和气象探测环境保护条例[S].第623号中华人民共和国国务院令, 北京, 2012.
[12]Blocken B, Stathopoulos T, Carmeliet J. CFD simulation of the atmospheric boundary layer: wall function problems[J]. Atmos Environ, 2007, 41(2): 238-252.
[13]Tominaga Y, Mochida A, Shirasawa T, et al. Cross comparisons of CFD results of wind environment at pedestrian level around a high-rise building and within a building complex[J]. Journal of Asian Architecture and Building Engineering, 2004, 3(1): 1-8.
[14]李磊, 张立杰, 张宁, 等. FLUENT在复杂地形风场精细模拟中的应用研究[J]. 高原气象, 2010, 29(3): 621-628.
[15]Architectural Institute of Japan. AIJ recommendations for loads on buildings[Z]. Tokyo: Architectural Institute of Japan. 1996: 1-133.
[16]张宁, 蒋伟楣, 王晓云. 城市街区与建筑物对气流特征影响的数值模拟研究[J]. 空气动力学报, 2002, 20(3): 339-342.
[17]苗世光, 蒋维楣, 胡非, 等. 建筑物分布对市区流场及污染物扩散影响的数值模拟[J]. 气象科学, 2004, 24(2): 137-143.
[18]欧阳琰, 蒋维楣, 胡非, 等. 城市小区环境流场及污染物扩散的风洞实验研究[J]. 南京大学学报:自然科学, 2003, 39(6): 770-780.
[19]陈燕, 蒋伟楣. 城市建筑物对边界层结构影响的数值试验研究[J]. 高原气象, 2006, 25(5): 824-833.
[20]游立军. 中国东部沿海测站环境改变对测风影响的研究[D]. 兰州: 兰州大学, 2007.
[21]段春锋, 缪启龙. 城市化扩张影响风场的数值模拟-以南京为例[C]//中国气象学会. 第27届中国气象学会年会-S5. 北京: 中国气象学会, 2010.
[22]王卫国, 徐敏, 蒋伟楣. 建筑物附近气流特征及湍流扩散的模拟试验[J]. 空气动力学报, 1999, 17(1): 87-92.
[23]刘学锋, 梁秀慧, 任国玉, 等. 台站观测环境改变对我国近地面风速观测资料序列的影响[J]. 高原气象, 2012, 31(6): 1645-1652.
文章导航

/