论文

双参数微物理方案在WRF单柱模式中的模拟检验和对比研究

  • 梅海霞 ,
  • 沈新勇 ,
  • 王卫国 ,
  • 黄伟
展开
  • 南京信息工程大学气象灾害预报预警与评估协同创新中心, 气象灾害教育部重点实验室, 南京 210044;2. 江苏省气象科学研究所, 南京 210009;3. 中国科学院大气物理研究所云降水物理与强风暴重点实验室, 北京 100029;4. 美国国家海洋大气总署环境预测中心, 美国 马里兰 20746

收稿日期: 2014-03-05

  网络出版日期: 2015-08-28

基金资助

国家重点基础研究发展计划973项目(2013CB430103, 2015CB453201);国家自然科学基金项目(41375058, 41175065); 江苏省青年气象科研基金(Q201407)

Evaluation and Comparison of Two Double-Moment Bulk Microphysics Schemes Using WRF Single-Column Model

  • MEI Haixia ,
  • SHEN Xinyong ,
  • WANG Weiguo ,
  • HUANG Wei
Expand
  • Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China;2. Jiangsu Institute of Meteorological Sciences, Nanjing 210009, China;3. Key Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;4. National Centers for Environmental Prediction, National Oceanic and Atmospheric Administration, Maryland 20746, USA

Received date: 2014-03-05

  Online published: 2015-08-28

摘要

利用耦合Milbrandt 2-mon(MY)和Morrison 2-mon(MOR)两种双参数微物理方案的WRF中的单柱模式, 对TWP-ICE(Tropical Warm Pool International Cloud Experiment)试验期间的个例进行数值模拟。通过与观测资料和云分辨率模式的模拟结果进行对比发现:两种双参数微物理方案能较好地模拟出TWP-ICE期间热带云系的宏观和微观的特征。模拟的降水率、地表向下长波辐射和大气顶向外长波辐射的量级、时间演变趋势与观测相一致;总的液相和冰相水凝物的垂直分布以及随时间的演变特征总体与观测以及云分辨率模式的结果也较接近。在整个时期, 两种方案水云中的雨滴宏观和微观特征差异较小, 而云滴混合比在两种方案之间的差别显著;冰晶对冰云的贡献在MY方案中占据主导地位, 而MOR方案中雪在冰云中扮演的角色相比于在MY方案中更为重要。微观上与MY方案相比, MOR方案中的云滴是由数量更大的小云滴构成, 但冰晶却是由数量较少的大冰晶粒子构成。微物理过程转换率的区别是造成两种方案冰云宏观分布特征差异的主要原因。与冰晶和雪有关的微物理过程转换分析表明:活跃期两种方案中与冰晶有关的主要微物理转换项有冰晶的凝华增长、冰晶向雪的自动转化、冰晶被雪碰并以及冰晶的沉降过程。而雪主要的转换项包含沉降和凝华过程等, 其中MY方案中雪的主要转换项更为丰富。该时期两种方案冰晶和雪的主要微物理转换项的垂直分布以及量级特征的差异同冰云的宏观分布相一致。季风抑制期, 两种方案中冰晶主要的源汇项包括凝华增长和沉降过程。MY方案中凝华凝冻核化也是主要的源汇项之一。抑制期MOR方案中高空的雪发展较强, 参与的微物理过程较MY方案更为丰富, 主要转换项比MY方案高出约一个量级。

本文引用格式

梅海霞 , 沈新勇 , 王卫国 , 黄伟 . 双参数微物理方案在WRF单柱模式中的模拟检验和对比研究[J]. 高原气象, 2015 , 34(4) : 890 -909 . DOI: 10.7522/j.issn.1000-0534.2014.00113

Abstract

Two double-moment Bulk Microphysics Schemes, Milbrandt 2-mon(MY) and Morrison 2-mon(MORR), were compared using the WRF single-column model during the period of the Tropical Warm Pool International Cloud Experiment. Results from the control simulations with the default settings of the two microphysics schemes in the Weather Research and Forecasting(WRF) model were able to reasonably reproduce the characteristics of the rain rate, the liquid water content, and the frozen water content, as compared with observations and cloud resolving model(CRM) results. The surface downward longwave radiation and outgoing longwave radiation were very close to observations as well. There is little difference in the macro-and micro-physical properties of the raindrops but a large divergence in the mixing ratio of cloud droplets between two schemes throughout the whole period. In the MY scheme, Ice crystals are dominant in ice clouds while snow particles make more contributions to the ice clouds in the MOR scheme. On a micro level, in the MOR scheme, water clouds contain more smaller cloud droplets while ice clouds are made up of less bigger ice crystals than those in the MY scheme. The distribution differences in ice clouds between two schemes are closely related with conversion rates of microphysical. Analyses of the conversion terms of microphysical processes suggest that ice crystals in both schemes are mainly related to processes of deposition growth, autoconversion of ice crystals to snow, collection by snow and sedimentation during the active monsoon period. The dominating conversion terms of snow in MY scheme are more various than those in the MOR scheme with deposition growth and sedimentation processes included in two schemes. The differences in vertical distribution and magnitude of the main conversion terms are pretty consistent with the composition features of ice clouds simulated by two schemes during the active monsoon period. In the depressed monsoon period, ice crystals in both schemes are dominated by deposition growth and sedimentation processes with ice nucleation in deposition mode and condensation freezing mode playing an equally important role only in the MY scheme. Snow clouds in the MOR scheme develop stronger with more kinds of primary conversion terms about one order of magnitude higher than the MY ones during the depressed monsoon period.

参考文献

[1]Morrison H,Pinto J O. Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme[J]. J Atmos Sci,2005,62(10):3683-3704.
[2]Morrison H,Pinto J O. Intercomparison of bulk cloud microphysics schemes in mesoscale simulations of springtime Arctic mixed-phase stratiform clouds[J]. Mon Wea Rev,2006,134(7):1880-1900.
[3]Morrison H,Thompson G,Tatarskii V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line:Comparison of one and two-moment schemes[J]. Mon Wea Rev,2009,137(3):991-1007.
[4]Harrington J Y,Sulia K,Morrison H. A method for adaptive habit prediction in bulk microphysical models. Part I:theoretical development[J]. J Atmos Sci,2013,70(2):349-364.
[5]Lebo Z J,Morrison H. A novel scheme for parameterizing aerosol processing in warm clouds[J]. J Atmos Sci,2013,70(11):3576-3598.
[6]Jarecka D,Grabowski W W,Morrison H,et al. Homogeneity of the subgrid-scale turbulent mixing in large-eddy simulation of shallow convection[J]. J Atmos Sci,2013,70(9):2751-2767.
[7]Milbrandt J A,Yau M K.A multimoment bulk microphysics parameterization.Part I:Analysis of the role of the spectral shape parameter[J].J Atmos Sci,2005,62(9):3051-3064.
[8]Milbrandt M K.A multimoment bulk microphysics parameterization.Part II:A proposed three-moment closure and scheme description[J].J Atmos Sci,2005,62(9):3065-3081.
[9]Milbrandt J A,Yau M K. A multimoment bulk microphysics parameterization. Part III:Control simulation of a hailstorm[J]. J Atmos Sci,2006,63(12):3114-3136.
[10]Milbrandt J A,Yau M K. A multimoment bulk microphysics parameterization. Part IV:Sensitivity experiments[J]. J Atmos Sci,2006,63(12):3137-3159.
[11]Milbrandt J A,McTaggart-Cowan R. Sedimentation-induced errors in bulk microphysics schemes[J]. J Atmos Sci,2010,67(12):3931-3948.
[12]Milbrandt J A,Morrison H. Prediction of graupel density in a bulk microphysics scheme[J]. J Atmos Sci,2013,70(2):410-429.
[13]Milbrandt J A,Glazer A,Jacob D. Predicting the snow-to-liquid ratio of surface precipitation using a bulk microphysics scheme[J]. Mon Wea Rev,2012,140(8):2461-2476.
[14]Chosson F,Vaillancourt P A,Milbrandt J A,et al. Adapting two-moment microphysics schemes across model resolutions:subgrid cloud and precipitation fraction and microphysical sub-time step[J]. J Atmos Sci,2014,71(7):2635-2653.
[15]Dawson D T,Xue M,Milbrandt J A,et al. Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms[J]. Mon Wea Rev,2010,138(4):1152-1171.
[16]Milbrandt J A,Yau M K,Mailhot J,et al. Simulation of an orographic precipitation event during IMPROVE-2. Part II:Sensitivity to the number of moments in the bulk microphysics scheme[J]. Mon Wea Rev,2010,138(2):625-642.
[17]Gettelman A,Morrison H,Ghan S J. A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model,Version 3(CAM3). Part II:Single-Column and Global Results[J]. J Climate,2008,21(15):3660-3679.
[18]马国忠,银燕,王秋京. 东北地区春季冷锋云系降水个例数值模拟及机理研究[J]. 黑龙江气象,2011,27(4):4-8.
[19]吴伟,邓莲堂,王式功."0911"华北暴雪的数值模拟及云微物理特征分析[J]. 气象,2011,37(8):991-998.
[20]罗栩羽,范绍佳,钟流举,等. 不同天气系统影响下广东省酸雨特征对比分析-气象场数值模拟[J]. 中国环境科学,2012,32(8):1439-1446.
[21]Fan J,Leung L R,Li Z,et al. Aerosol impacts on clouds and precipitation in eastern China:Results from bin and bulk microphysics[J]. J Geophys Res,2012,117(D16):262-269,doi:10.1029/2011JD016537.
[22]Grabowski W W,Morrison H. Indirect impact of atmospheric aerosols in idealized simulations of convective-radiative quasi equilibrium. Part II:Double-moment microphysics[J]. J Climate,2011,24(7):1897-1912.
[23]Lebo Z J,Morrison H,Seinfeld J H. Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment[J]. Atmospheric Chemistry and Physics,2012,12(20):9941-9964.
[24]Lebo Z J,Morrison H. Dynamical effects of aerosol perturbations on simulated idealized squall lines[J]. Mon Wea Rev,2014,142(3):991-1009.
[25]孟宪贵,张苏平. 夏季黄海表面冷水对大气边界层及海雾的影响[J]. 中国海洋大学学报:自然科学版,2012,42(6):016-023.
[26]Del G A D,Wu J,Chen Y. Characteristics of mesoscale organization in WRF simulations of convection during TWP-ICE[J]. J Climate,2012,25(17):5666-5688.
[27]胡金磊. 下垫面环境、微物理过程和雷达资料同化在冰雹云形成演变及数值预报中的作用[D].北京:中国气象科学研究院,2012:1-80.
[28]Bryan G H,Morrison H. Sensitivity of a Simulated Squall Line to Horizontal Resolution and Parameterization of Microphysics[J]. Mon Wea Rev,2012,140(1):202-225.
[29]Jung Y,Xue M,Zhang G. Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme[J]. J Appl Meteor Climatol,2010,49(1):146-163.
[30]Gao W,Sui C H,Chen Wang T C,et al. An evaluation and improvement of microphysical parameterization from a two-moment cloud microphysics scheme and the Southwest Monsoon Experiment(SoWMEX)/Terrain-influenced Monsoon Rainfall Experiment(TiMREX)observations[J]. J Geophys Res,2011,116(D19):1052-1054,doi:10.1029/2011JD015718.
[31]Luo Y,Wang Y,Wang H,et al. Modeling convective-stratiform precipitation processes on a Mei-Yu front with the Weather Research and Forecasting model:Comparison with observations and sensitivity to cloud microphysics parameterizations[J]. J Geophys Res,2010,115(D18):311-319,doi:10.1029/2010JD013873.
[32]Han M,Braun S A,Matsui T,et al. Evaluation of cloud microphysics schemes in simulations of a winter storm using radar and radiometer measurements[J]. J Geophys Res:Atmos,2013,118(3):1401-1419,doi:10.1002/jgrd.50115.
[33]Morrison,H,Curry J A,Shupe M D,et al. A new double-moment microphysics parameterization for application in cloud and climate models. Part II:Single-column modeling of arctic clouds[J]. J Atmos Sci,2005,62(6):1678-1693.
[34]Luo Y,Xu K M,Morrison H,et al. Arctic mixed-phase clouds simulated by a cloud-resolving model:Comparison with ARM observations and sensitivity to microphysics parameterizations[J]. J Atmos Sci,2008,65(4):1285-1303.
[35]Solomon A,Morrison H,Persson O,et al. Investigation of microphysical parameterizations of snow and ice in arctic clouds during M-PACE through model-observation comparisons[J]. Mon Wea Rev,2009,137(9):3110-3128.
[36]Morrison H,Tessendorf S A,Ikeda K,et al. Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup[J]. Mon Wea Rev,2012;140(8):2437-2460.
[37]Morrison H. On the numerical treatment of hydrometeor sedimentation in bulk and hybrid bulk-bin microphysics schemes[J]. Mon Wea Rev,2012,140(5):1572-1588.
[38]Van Weverberg K,Vogelmann A M,Morrison H,et al. Sensitivity of idealized squall-line simulations to the level of complexity used in two-moment bulk microphysics schemes[J]. Mon Wea Rev,2012,140(6):1883-1907.
[39]Morrison H,Milbrandt J. Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations[J]. Mon Wea Rev,2011,139(4):1103-1130.
[40]Ghan S,Randall D,Xu K M.A comparison of single column simulations of summertime midlatitude continental convection[J].J Geophys Res,2000,105(D2):2091-2124.
[41]Wang W,Liu X,Xie S,et al.Testing ice microphysics parameterizations in the NCAR community atmospheric model version 3 using tropical warm pool-international cloud experiment data[J].J Geophys Res,2009,114(D14),doi:10.1029/2008JD011220.
[42]Song X,Zhang G J. Microphysics parameterization for convective clouds in a global climate model:Description and single-column model tests[J]. J Geophys Res,2011,116(D02):3-25,doi:10.1029/2010JD014833.
[43]May P T,Mather J H,Vaughan G,et al.Field research:Characterizing oceanic convective cloud systems[J].Bull Amer Meteor Soc,2008,89(2):153-155.
[44]Zhang M H,Lin J L.Constrained variational analysis of sounding data based on column-integrated budgets of mass,heat,moisture,and momentum:Approach and application to ARM measurements[J].J Atmos Sci,1997,54(11):1503-1524.
[45]Zhang M H,Lin J L,Cederwall R T,et al.Objective analysis of ARM IOP data:Method and sensitivity[J].Mon Wea Rev,2001,129(2):295-311.
[46]Clothiaux E E,Ackerman T P,Mace G G,et al.Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites[J]. J Appl Meteor,2000,39(5):645-665.
[47]Stith J L,Hagerty J A,Heymsfield A J. Microphysical characteristics of tropical updrafts in clean conditions[J].J Appl Meteor,2004,43(5):779-794.
[48]Liao L,Sassen K.Investigation of relationships between Ka-band radar reflectivity and ice and liquid water content[J].Atmos Res,1994,34(1):231-248.
[49]Liu C L,Illingworth A J.Toward more accurate retrievals of ice water content from radar measurements of clouds[J].J Appl Meteor,2000,39(7):1130-1146.
[50]Mather J H,McFarlane S A,Miller M A,et al.Cloud properties and associated radiative heating rates in the tropical western Pacific[J].J Geophys Res,2007,112(D05):1108-1117,doi:10.1029/2006JD007555.
[51]Comstock J M,McFarlane S A,d'Entremont R,et al. An intercomparison of microphysical retrieval algorithms for upper-tropospheric ice clouds[J].Bull Amer Meteor Soc,2007,88(2):191-204.
[52]刘健. 利用卫星数据分析青藏高原云微物理特性[J]. 高原气象,2013,32(1):38-45,doi:10.7522/j. issn. 1000-0534. 2013. 00005.
[53]蔡兆鑫,周毓荃,蔡淼. 一次积层混合云系人工增雨作业的综合观测分析[J]. 高原气象,2013,32(5):1460-1469,doi:10.7522/j. issn. 1000-0534. 2012. 00115.
[54]徐小红,余兴,朱延年,等. 一次强飑线云结构特征的卫星反演分析[J]. 高原气象,2012,31(1):258-268.
[55]陈英英,唐仁茂,李德俊,等. 利用雷达和卫星资料对一次强对流天气过程的云结构特征分析[J]. 高原气象,2013,32(4):1148-1156,doi:10.7522/j. issn. 1000-0534. 2012. 00108.
[56]李延江,陈小雷,张宝贵,等. 渤海西海岸带大暴雨中尺度云团空间结构分析[J]. 高原气象,2013,32(3):818-828,doi:10.7522/j. issn. 1000-0534. 2012. 00075.
[57]Seo E K,Liu G.Determination of 3D cloud ice water contents by combining multiple data sources from satellite,ground radar,and a numerical model[J]. Journal of Applied Meteorology and Climatology,2006,45(11):1494-1504.
[58]Varble A,Fridlind A M,Zipser E J,et al.Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations:Precipitation and cloud structure[J].J Geophys Res,2011,116(D12):1248-1256,doi:10.1029/2010JD015180.
[59]Morrison H,Curry J A,Khvorostyanov V I.A new double-moment microphysics parameterization for application in cloud and climate models.Part I:Description[J].J Atmos Sci,2005,62(6):1665-1677.
[60]Morrison H,Pinto J O. Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme[J]. J Atmos Sci,2005,62(10):3683-3704.
[61]Milbrandt J A,Yau M K.A multimoment bulk microphysics parameterization.Part IV:Sensitivity experiments[J].J Atmos Sci,2006,63(12):3137-3159.
[62]Khairoutdinov M, Kogan Y.A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus[J]. Mon Wea Rev,2000,128(1):229-243.
[63]Cohard J M,Pinty J P.A comprehensive two-moment warm microphysical bulk scheme. I:Description and tests[J].Quart J Roy Meteor Soc,2000,126(566):1815-1842.
[64]DeMott P J,Meyers M P,Cotton W R. Parameterization and impact of ice initiation processes relevant to numerical model simulations of cirrus clouds[J]. J Atmos Sci,1994,51(1):77-90.
[65]Brandes E,Ikeda K,Zhand G.A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer[J].J Appl Meteor Climatol,2007,46(5):634-650.
[66]Thompson G,Field P R,Rasmussen R M,et al. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme.Part II:Implementation of a new snow parameterization[J].Mon Wea Rev,2008,136(12):5095-5115.
[67]Martin G M,Johnson D W,Spice A.The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds[J].J Atmos Sci,1994,51(13):1823-1842.
[68]Bryan G H,Wyngaard J C,Fritsch J M. Resolution requirements for the simulation of deep moist convection[J]. Mon Wea Rev,2003,131(10):2394-2416.
[69]Narita M,Ohmori S. Improving precipitation forecasts by the operational nonhydrostatic mesoscale model with the Kain-Fritsch convective parameterization and cloud microphysics[C]//Preprints,12th Conf. on Mesoscale Processes,Watervillle Valley,NH,Amer Meteor Soc,2007,3.
[70]Lean H W,Clark P A,Dixon M,et al. Characteristics of high-resolution versions of the met office unified model for forecasting convection over the United Kingdom[J]. Mon Wea Rev,2008,136(9):3408-3424.
[71]Xie S,Hume T,Jakob C,et al.Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE[J].J Climate,2010,23(1):57-79.
[72]Xie S,Zhang M,Boyle J,et al. Impact of a revised convective triggering mechanism on Community Atmosphere Model,Version 2,simulations:Results from short-range weather forecasts[J]. J Geophys Res,2004,109(D14):121-134,doi:10.1029/2004JD004692.
[73]郑晓辉,徐国强,魏荣庆. GRAPES新云量计算方案的引进和影响试验[J]. 气象,2013,39(1):57-66.
[74]Mather J H,McFarlane S A,Miller M A,et al. Cloud properties and associated radiative heating rates in the tropical western Pacific[J]. J Geophys Res,2007,112(D05),doi:10.1029/2006JD007555.
[75]Van Weverberg K,Vogelmann A M,Lin W,et al. The role of cloud microphysics parameterization in the simulation of mesoscale convective system clouds and precipitation in the tropical western pacific[J]. J Atmos Sci,2013,70(4):1104-1128.
[76]张大林. 各种非绝热物理过程在中尺度模式中的作用[J].大气科学,1998,22(4):548-561.
[77]Wang Y,Long C N,Leung L R,et al. Evaluating regional cloud-permitting simulations of the WRF model for the Tropical Warm Pool International Cloud Experiment(TWP-ICE),Darwin,2006[J]. J Geophys Res,2009,114(D21),doi:10.1029/2009JD012729.
文章导航

/