论文

基于高分辨率地形数据的模式地形构造与数值试验

  • 何光碧 ,
  • 彭俊 ,
  • 屠妮妮
展开
  • 中国气象局成都高原气象研究所, 成都 610072

收稿日期: 2013-06-04

  网络出版日期: 2015-08-28

基金资助

公益性行业(气象)科研专项(GYHY201206039); 国家自然科学基金项目(40775032); 中国气象局业务建设项目"西南区域高原山地数值模式快速同化预报系统研发"; 西南区域气象中心重大科研业务项目(2010-1)

Terrain Construction and Experiment for Numerical Model Based on High Resolution Terrain Data

  • HE Guangbi ,
  • PENG Jun ,
  • TU Nini
Expand
  • Institute of Plateau Meteorology, China Meteorology Administration, Chengdu 610072, China

Received date: 2013-06-04

  Online published: 2015-08-28

摘要

针对2008年7月20-22日四川盆地区域性暴雨过程, 通过引入高分辨率的地形数据构造不同的模式地形, 进行了WRF模式综合地形处理方法(TESTC)、不同多项式截断阶数的切比雪夫滤波方案(TEST5)和5点权重平均处理方案(TEST7)的地形试验。结果表明: (1)引入不同分辨率的地形数据, 且采用不同的地形滤波方法, 对模式预报效果是不一样的。相对而言, 基于高分辨率地形数据, 采用90截断阶数的TEST5试验略显优势。(2)三种地形处理方案不同程度地反映了主要降雨带的位置和强度, TEST5试验模拟的四川盆地东部降水强度较实况偏强, 但降水演变和降水落区更接近实况, TEST7试验总体模拟效果介于TESTC和TEST5之间。(3)不同地形处理方案带来四川盆地及周边地形高度和坡度的变化, 通过影响与中尺度系统相伴的物理量, 进而影响降水落区、强度与降水进程。(4)由于地形处理差异, 在四川盆地东部地形坡度较大区, 地形扰动增强风场脉动, TEST5试验带来更大的东西风切变, 而水平风场的辐合使低涡系统加强, 辐合上升运动加强, 将更多的低层水汽带到高空。TEST5试验模拟的低涡更强、位置偏东, 导致低涡影响下的降水强度更强, 落区偏东。

本文引用格式

何光碧 , 彭俊 , 屠妮妮 . 基于高分辨率地形数据的模式地形构造与数值试验[J]. 高原气象, 2015 , 34(4) : 910 -922 . DOI: 10.7522/j.issn.1000-0534.2014.00022

Abstract

Based on high resolution terrain data, terrain experiments using different terrain disposal methods, including WRF synthetic terrain disposal method(TESTC), Chebyshev polynomial filtering method(a representative experiment TEST5) and five points weighed average method(TEST7) have been done for an heavy rainstorm occurred in Sichuan during 20-22 July 2008. The results show as follows: (1) Using terrain data at different resolutions and adopting different terrain filtering methods have different effects on the prediction results of numeric weather prediction model. Comparatively, based on high resolution terrain data, Chebyshev polynomial filtering method of using 90 truncation rank shows a slight predominance over other methods. (2) Three kinds of terrain disposal methods can predict main precipitation area and intensity. Although precipitation intensity simulated by TEST5 is stronger than the real, simulated precipitation evolution and precipitation area are closer to the real than that of TESTC and TEST7. As to overall simulation effect, TEST7 is between TESTC and TEST5. (3) Different terrain deposal schemes bring about changes to the model terrain altitude and slope of basin and surrounding area, and such changes impact on precipitation areas, intensities and evolutions by working on physical elements going with meso-scale systems activities. (4) Due to differences of terrain disposal, in the east basin where terrain gradient is bigger, topographic perturbation boosts up wind field fluctuation and TEST5 brings about bigger east-west wind-shear. The wind convergence strengthens low vortex and ascend motion, inducing more low-layer vapor being transported to upper air. The intensity of low vortex simulated by TEST5 is stronger and the low vortex position is more eastward, leading to stronger precipitation intensity and more eastward precipitation position than TESTC and TEST7.

参考文献

[1]郁淑华, 何光碧, 徐会明, 等. 泥石流滑坡发生的降水预报方法与雨量标准-以四川省盆地区域为例[J]. 山地学报, 2005, 23(2):158-164.
[2]陶诗言. 中国之暴雨[M]. 北京:科学出版社, 1980:13.
[3]Wallace J M, Tibaldi S, Simmns A J. Reduction of systematic forecast errors in the ECMWF model throughthe introduction of an envelope orography[J]. Quart J Roy Meteor Sci, 1983, 109:683-718.
[4]钱永甫, 董梁. 包络地形对气候模拟特征的影响[J]. 高原气象, 1995, 14(2):129-140.
[5]张凯, 何宏让, 肖辉. 一次暴雪过程地形方案的敏感性试验研究[J]. 气象科学, 2009, 29(6):815-820.
[6]刘一, 陈德辉, 胡江林, 等. GRAPES 中尺度模式地形有效尺度影响的理想数值试验研究[J]. 热带气象学报, 2011, 27(1):53-62.
[7]高学杰, 徐影, 赵宗慈, 等. 数值模式不同分辨率和地形对东亚降水模拟影响的试验[J]. 大气科学, 2006, 30(2):186-192.
[8]王光辉, 陈峰峰, 沈学顺, 等. 数值模式中地形滤波处理及水平扩散对降雨预报的影响[J]. 地球物理学报, 2008, 51(6):1642-1650.
[9]屠妮妮, 陈静, 何光碧. 切比雪夫多项式展开滤波方案在模式地形的适用性研究[J]. 高原气象, 2012, 31(1):47-56.
[10]刘还珠. 青藏高原的不同地形方案对天气系统影响的数值试验[J]. 大气科学, 1988, 12(2):162-167.
[11]Riphagen H A, Bruyere C L, Jordaan W, et al. Experiments with the NCEP regional Eta model at the south African Weather Bureau, with emphasis on terrain representation and it effect on precipitation predictions[J]. Mon Wea Rev, 2002, 130:1246-1263.
[12]潘在桃. 中尺度数值模式中初始场和地形的不同处理对降水预报的影响及相对比较[J]. 气象学报, 1990, 48(4):491-499.
[13]张朝林, 季崇萍, Kuo Ying-Hwa, 等. 地形对"00·7 "北京特大暴雨过程影响的数值研究[J]. 自然科学进展, 2005, 15(5):572-578.
[14]董美莹, 陈联寿, 程正泉, 等. 地形影响热带气旋"泰利"降水增幅的数值研究[J]. 高原气象, 2011, 30(3):700-710.
[15]李博, 刘黎平, 赵思雄, 等. 局地低矮地形对华南暴雨影响的数值试验[J]. 高原气象, 2013, 32(6):1638-1650, doi:10.7522/j.issn.1000-0534.2012.00156.
[16]钟水新, 王东海, 张人禾, 等. 一次东北冷涡降水过程的结构特征与影响因子分析[J]. 高原气象, 2011, 30(4):951-960.
[17]王腾蛟, 张镭, 胡向军, 等. WRF模式对黄土高原丘陵地形条件下夏季边界层结构的数值模拟[J]. 高原气象, 2013, 32(5):1261-1271, doi:10.7522/j.issn.1000-0534.2012.00121.
[18]何光碧, 屠妮妮, 张利红, 等. 青藏高原东侧一次低涡暴雨过程地形影响的数值试验[J]. 高原气象, 2013, 32(6):1546-1556, doi:10.7522/j.issn.1000-0534.2012.00150.
[19]徐静, 任立良, 刘晓帆. 基于不同分辨率及地形条件的DEM空间尺度影响研究[J]. 水电能源科学, 2008, 26(4):80-84.
[20]何光碧, 高文良, 屠妮妮. 两次高原低涡东移特征及发展机制动力诊断[J]. 气象学报, 2009, 67(4):599-612.
文章导航

/