论文

大口径闪烁仪和涡动相关仪测量大气折射率结构常数的比较

  • 徐安伦 ,
  • 彭浩 ,
  • 董保举
展开
  • 大理国家气候观象台, 大理 671003;2. 中国气象科学研究院, 北京 100081

收稿日期: 2013-12-10

  网络出版日期: 2015-08-28

基金资助

国家自然科学基金项目(41275050);云南省气象局科技项目(YZ201305)

Comparison of Large Aperture Scintillometer and Eddy-Covariance System Measurements with Structure Parameter of Refractive Index of Air

  • XU Anlun ,
  • PENG Hao ,
  • DONG Baoju
Expand
  • Dali National Climate Observatory, Dali 671003, China;2. Chinese Academy of Meteorological Sciences, Beijing 100081, China

Received date: 2013-12-10

  Online published: 2015-08-28

摘要

利用大理国家气候观象台大口径闪烁仪(Large Aperture Scintillometer, LAS)和涡动相关系统(Eddy-covariance System, EC)在洱海湖滨农田下垫面的同步观测资料, 初步分析了两种仪器测量大气折射率结构常数Cn2的异同特征。结果表明, 两种仪器测量的Cn2具有较好的相关性, 相关系数达0.73。LAS测量的Cn2数量级为10-17~10-14 m-2/3, EC测量的数量级为10-16~13-14 m-2/3。在典型晴天、多云和阴天条件下, 两种仪器测量的有植被水田和无植被旱地的Cn2均表现出明显的日变化特征, 日出后1 h和日落前1 h左右出现最小值, 中午前后达到最大值, 而且这种日变化趋势基本一致。测量结果在数量级上的差异是由测量高度、测量方法、仪器噪声、天气状况、风速风向、净辐射通量和大气稳定状态等因素造成的。

本文引用格式

徐安伦 , 彭浩 , 董保举 . 大口径闪烁仪和涡动相关仪测量大气折射率结构常数的比较[J]. 高原气象, 2015 , 34(4) : 935 -941 . DOI: 10.7522/j.issn.1000-0534.2014.00104

Abstract

Based on the observational data of Large Aperture Scintillometer(LAS) and Eddy-covariance System (EC) from Dali National Climate Observatory, the structure parameter of the refractive index of air (Cn2) between LAS and EC measurement was analyzed.The results show that there was a very good correlation between logCn2 values measured by two kinds of instruments with the correlation coefficient up to 0.73.The values of Cn2 measured by LAS lay between 10-17 and 10-14 m-2/3, and measured by EC lay between 10-16 and 10-13 m-2/3.The diurnal variations of Cn2 were evident and the values of Cn2 reached the maximum in the afternoon and the minimum in the sunrise and sunset for a clear, cloudy and overcast day in paddy field covered with vegetation and dry land covered with no vegetation.The diurnal variation tendency of Cn2 measured by EC and LAS were consistent.However, the most values of Cn2 measured by EC were 1 hour order bigger in magnitude than measured by LAS due to the effects of installation height, measurement method, noise level of electronics, sky condition, wind speed and direction, net radiation fluxes, atmospheric stability and so on, wherein the installation height was the major factor.

参考文献

[1]袁仁民,曾宗泳,肖黎明,等.不同方法测量折射率结构常数的比较[J].光学学报,2000,20(6):755-761.
[2]周孟莲,刘晶儒,蔡跃,等.超声波法测量大气折射率结构常数[J].强激光与粒子束,2005,17(12):1783-1786.
[3]吴晓庆,朱行听,黄宏华,等.基于Monin-Obukhov相似理论估算近地面光学湍流强度[J].光学学报,2012,32(7):22-28.
[4]李云波,黄小毛,余军浩,等.近海面大气光学湍流计算模型的比较与改进[J].光学学报,2013,32(11):23-28.
[5]饶瑞中.现代大气光学[M].北京:科学出版社,2012,158:589-594.
[6]郭伟,刘寿东,刘绍民,等.大孔径闪烁仪观测中的相似理论适用性分析[J].高原气象,2013,32(4):944-955, doi:10.7522/j.issn.1000-0534.2012.00090.
[7]刘绍民,李小文,施生锦,等.大尺度地表水热通量的观测、分析与应用[J].地球科学进展,2010,25(11):1113-1127.
[8]卢俐,刘绍民,孙敏章,等.大孔径闪烁仪研究区域地表通量的进展[J].地球科学进展,2005,20(9):932-938.
[9]李远,孙睿,刘绍民,等.大孔径闪烁仪观测数据在陆面模式验证中的应用初探[J].地球科学进展,2010,25(11):1237-1247.
[10]Kleissl J,Gomez J,Hong S H,et al.Large aperture scintillometer intercomparison study[J]. Bound-Layer Meteor,2008,128(1):133-150.
[11]Randow C V,Kruijt B,Holtslag A A M,et al.Exploring eddy-covariance and large-aperture scintillometer measurements in an Amazonian rain forest[J].Agricultural and Forest Meteorology,2008,148(4):680-690.
[12]王维真,徐自为,刘绍民,等.黑河流域不同下垫面水热通量特征分析[J].地球科学进展,2009,24(7):714-723.
[13]艾力·买买提明,何清,霍文,等.塔克拉玛干沙漠腹地LAS和EC观测感热通量对比分析[J].地球科学进展,2010,25(11):1128-1236.
[14]马迪,吕世华,陈晋北,等.大孔径闪烁仪测量戈壁地区感热通量[J].高原气象,2010,29(1):56-62.
[15]Kesteren B V,Hartogensis O K.Analysis of the systematic errors found in the Kipp & Zonen large-aperture scintillometer[J].Bound-Layer Meteor,2011,138(1):493-509.
[16]Liu S M,Xu Z W,Wang W Z,et al.A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem[J].Hydrology and Earth System Sciences,2011,15(4):1291-1306.
[17]郑宁,张劲松,孟平,等.LAS测算森林冠层上方温度结构参数的可行性[J].生态学报,2012,32(7):2166-2173.
[18]陈继伟,左洪超,王介民,等.LAS在西北干旱区荒漠均匀下垫面的观测研究[J].高原气象,2013,32(1):56-64,doi:10.7522/j.issn.1000-0534.2013.00007.
[19]郝小翠,张强,岳平,等. 黄土高原影响LAS观测感热通量的物理因素分析[J]. 高原气象,2014,33(4):957-966,doi:10.7522/j.issn.1000-0534.2013.00042.
[20]Wang T I,Ochs G R,Clifford S F.A saturation-resistant optical scintillometer to measure <em>C</em><em><sub>n</sub></em><sup>2</sup>[J].Journal of Optical Society of America,1978,68(3):334-338.
[21]吴晓庆.海洋大气环境下运动平台上湍流通量和光学湍流测量问题探析[J].安徽师范大学学报:自然科学版,2012,35(1):1-6.
[22]Ochs G R,Wilson J J.A second-generation large aperture scintillometer[Z].NOAA Tech Memor.ERL ETL-232,NOAA Environmental Research Laboratories,Boulder,CO,USA,1993:24.
[23]Beland R R.Propagation through atmospheric optical turbulence[J].Atmospheric Propagation of Radiation,1993,2:157-232.
[24]Tunick A.<em>C</em><em><sub>n</sub></em><sup>2</sup> model to calculate the micrometeorological influences on the refractive index structure parameter[J].Environmental Modelling &amp; Software,2003,18(2):165-171.
[25]Tunick A,Tikhonov N,Vorontsov M,et al.Characterization of optical turbulence (<em>C</em><em><sub>n</sub></em><sup>2</sup>) data measured at the ARL A_LOT facility[M].US Army Research Laboratory,2005.
文章导航

/