论文

半干旱区典型下垫面反照率特征的初步分析

  • 张驰 ,
  • 范广洲 ,
  • 马柱国 ,
  • 程炳岩 ,
  • 赵天保 ,
  • 冯锦明 ,
  • 王鹤松
展开
  • 重庆市气候中心, 重庆 401147;2. 成都信息工程大学大气科学学院 高原大气与环境四川省重点实验室, 成都 610225;3. 中国科学院大气物理研究所 东亚区域气候-环境重点实验室, 北京 100029

收稿日期: 2013-12-16

  网络出版日期: 2015-08-28

基金资助

国家重大科学研究计划项目(2012CB956201); 科技部公益性行业(气象)专项(GYHY201106028); 国家自然科学基金项目(41275085); 重庆气象局业务技术攻关重点(团队)项目(ywgg-201508)

Characteristics of Albedo over Different Underlying Surface in the Semi-Arid Area

  • ZHANG Chi ,
  • FAN Guangzhou ,
  • MA Zhuguo ,
  • CHENG Bingyan ,
  • ZHAO Tianbao ,
  • FENG Jinming ,
  • WANG Hesong
Expand
  • The Climatic Center of Chunking Meteorological Branch, Chongqing 401147, China;2. Plateau Atmospheric and Environmental Research Key Laboratory of Sichuan Province, Chengdu University of Information Technology, Chengdu 610225, China;3. Key Laboratory of Regional Climate-Environment for Temperate East Asia(RCE-TEA), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Received date: 2013-12-16

  Online published: 2015-08-28

摘要

利用2008-2009年7-9月中国半干旱区9个通量观测站的通量和常规气象数据结合同期MODIS的EVI植被覆盖数据, 分析了不同下垫面反照率的月、季特征及其与降水之间的关系, 系统地探讨了特殊天气条件下各类下垫面的反照率日变化特征。结果表明: (1)按照季平均反照率的大小, 各类下垫面排序依次为荒漠草地> 高寒草甸> 退化草地> 农田; (2)除退化草地外, 其余各类下垫面反照率的拟合结果均通过0.05显著性水平检验, 高寒草甸的拟合好于荒漠草地、农林混交农田和东北农田, 而荒漠草地和农林混交农田拟合效果相当; (3)在荒漠草地下垫面, 夜雨不会对次日反照率的"U"型分布产生影响, 存在潜热维持土壤湿度和感热加强蒸腾作用两种机制; (4)无雪盖高寒草甸的反照率主要受植被覆盖度和高原植被叶面特性的影响; 退化草地下垫面在强降水日白天出现反照率 "√"型分布, 由于09:00(北京时, 下同)11:00云量偏多、反照率偏高, 15:00-17:00太阳高度角对反照率增大作用强于土壤湿度的减小作用, 反照率缓慢回升造成的。低矮作物农田在雨日15:00-17:00反照率的骤升是植被覆盖度和太阳高度角相互作用所致, 受浅层土壤含水量的影响不大。

本文引用格式

张驰 , 范广洲 , 马柱国 , 程炳岩 , 赵天保 , 冯锦明 , 王鹤松 . 半干旱区典型下垫面反照率特征的初步分析[J]. 高原气象, 2015 , 34(4) : 1029 -1040 . DOI: 10.7522/j.issn.1000-0534.2014.00071

Abstract

Based on radiation-flux, regular meteorological data and simultaneously remote sensed MODIS EVI data, obtained from various underlying land-surface of nine Chinese semi-arid area stations from July to September in 2008 and 2009, the seasonal and diurnal mean albedo, the fit regression with precipitation and the one-week continuous variations were characterized. The mutual effects among albedo, solar radiation and land-surface temperature in different weather conditions, including rain and snow, were deeply delved. The seasonal mean albedo over 4 types of underlying land-surface show that the magnitude are decreased as following: desert grassland > plateau grassland > recessive grassland > farmland, re-supporting the previous reports. The fit regression between the albedo and the precipitation on the plateau grassland, desert grassland and farmland are all significant (P-value < 0.05), but the recessive grassland is not available. The night rain scarcely effect the 'U' style distribution of the next day's diurnal albedo because the soil water cycling from latent heat or evaporation system attributed to the sensible heat on the desert grassland surface. While on the plateau grassland without snow cover, the albedo is mainly decided by the plant coverage per unit area and leaves property of plateau plant. The proper rainfall, lower shallow soil temperature, land-surface air temperature and lower solar income radiation can make the albedo bigger on the snow covered grassland. The new snow and frozen soil might be the crisis for the albedo of highland grassland. For the recessive grassland, the diurnal '√' style distribution in a marked rainfall procedure will be more obvious, if mean albedo from 09:00(Beijing Time, hereafter the same) 11:00 is much bigger due to more cloud scattering and the slowly increased albedo from 15:00-17:00 mainly due to the fact that raising force of the lower solar motive angle is bigger than the decreasing effect of the increasing the shallow soil water per column. In a diurnal 'U' style distribution of albedo on the farmland planted with corn, the mutual function between the solar motive angle and plant coverage per unit is conducive to the sudden increase of the mean albedo during 15:00-17:00 in the rain day, and the shallow soil water per column hardly contribute to the raised albedo at that time.

参考文献

[1]Middleton N, Thomas D S G.World atlas of desertification (United nations environment programme)[M]. London:Edward Arnold, 1992:1-69.
[2]Le Houérou H N. An overview of vegetation and land degradation in world arid lands[M]//Dregne H E, ed. Degradation and Restoration of Arid Lands. Lubbock:International Center for Arid and Semi-Arid Lands Studies, Texas Tech University, 1992:289.
[3]符淙斌, 叶笃正. 全球变化和我国未来的生存环境[J]. 大气科学, 1995, 19(1):116-126.
[4]胡隐樵, 高由禧, 王介民, 等.黑河实验(HEIFE)的一些研究成果[J]. 高原气象, 1994, 13(3):225-236.
[5]王介民. 陆面过程实验和地气相互作用研究-从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J]. 高原气象, 1999, 18(3):281-294.
[6]Lu Daren. Inner Mongolia semi-arid grassland soil-vegetation-atmosphere interaction(IMGRASS)[J]. Global Change News Letter, 1997, 31:4-5.
[7]张强, 黄荣辉, 王胜, 等. 西北干旱区陆-气相互作用试验(NWC2ALIEX)及其研究进展[J]. 地球科学进展, 2005, 20(4):427-441.
[8]张强, 胡向军, 王胜, 等. 黄土高原陆面过程试验研究(LOPEX)有关科学问题[J]. 地球科学进展, 2009, 24(4):363-371.
[9]胡国权, 丁一汇. HUBEX试验期间不同地面的能量收支研究[J]. 气候与环境研究, 2001, 6(2):228-233.
[10]闭建荣. 黄土高原半干旱区地表能量平衡的观测试验研究[D]. 兰州:兰州大学, 2008.
[11]Bonan G B. The land surface climatology of the NCAR land surface model coupled to the NCAR Community Climate Model[J]. J Climate, 1998, 11:1307-1326.
[12]Xue Wei, Hahmann A N, Dickinson R E, et al. Comparison of albedos computed by land surface models and evaluation against remotely sensed data[J]. J Geophys Res, 2001, 106(D18):687-702.
[13]Zhou L, Dickinson R E, Tian Y, et al. Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Model[J]. J Geophys Res, 2003, 108(D15):1-20.
[14]Baldocchi D, Falge E, Gu L, et al. FLUXNET:A new tool to study th e temporal and spatial variab ility of ecosystem scale carbon dioxide, water vapor, and energy flux den sities[J]. Bull Amer Meteor Soc, 2001, 82(11):2415-2434.
[15]Koster R D, Suarez M J, Heiser M. Variance and predictability of precipitation at seasonal-to-interannual timescales[J]. J Hydrometeor, 2000, 1:26-46.
[16]Zhao Ming, Zeng Xinmin. A theoretical analysis on the local climate change induced by the change of landuse[J]. Adv Atmos Sci, 2002, 19(1):45-63.
[17]Ma Zhuguo, Fu Congbin. Interannual characteristics of the surface hydrological variables over the arid and semi-arid areas of northern China[J]. Global and Planetary Change, 2003, 37:189-200.
[18]周连童, 黄荣辉. 中国西北干旱、半干旱区感热的年代际变化特征及其与中国夏季降水的关系[J]. 大气科学, 2008, 32(6):1276-1288.
[19]Zhong Qiang, Wu Aisheng. On the relationship between planetary and surface albedo:Model's comparison and validation[J]. Acta Meteor Sini, 1995, 9(4):402-411.
[20]罗哲贤. 中国地区气溶胶光学厚度特征及其辐射强迫和气候效应的数值模拟[D]. 北京:北京大学, 1986.
[21]Zhang Q, Huang R H. Parameters of land-surface processes for Gobi in north-west China[J]. Bound-Layer Meteor, 2004, 110:471-478.
[22]刘辉志, 涂钢, 董文杰. 半干旱区不同下垫面地表反照率变化特征[J]. 科学通报, 2008, 53(10):1220-1227.
[23]涂钢, 刘辉志, 董文杰. 半干旱区不同下垫面近地层湍流通量特征分析[J]. 大气科学, 2009, 33(4):719-725.
[24]孙俊, 胡泽勇, 荀学义, 等. 黑河中上游不同下垫面反照率特征及其影响因子分析[J]. 高原气象, 2011, 30(3):607-613.
[25]孙昭萱, 张强. 河西走廊中部干旱区陆面水分和辐射特征研究[J]. 高原气象, 2010, 29(6):1423-1430.
[26]王少影, 张宇, 吕世华, 等. 玛曲高寒草甸地表辐射与能量收支的季节变化[J]. 高原气象, 2012, 31(3):605-614.
[27]张果, 周广胜. 稀疏植被地表反照率日变化对通量模拟效果的影响分析-以内蒙古荒漠草原感热和潜热通量为例[J]. 高原气象, 2012, 31(4):942-951.
[28]何建军, 余哗, 陈晋北, 等. 植被覆盖度对兰州地区气象场影响的模拟研究[J]. 高原气象, 2012, 31(6):1611-1621.
[29]刘寿东, 王秀丽, 王咏薇, 等. 北京密云地区辐射与能量平衡特征分析[J]. 高原气象, 2011, 30(4):996-1004.
[30]冯超, 古松, 赵亮, 等. 青藏高原三江源区退化草地生态系统的地表反照率特征[J]. 高原气象, 2010, 29(1):70-77.
[31]刘永强, 何清, 张宏升, 等. 塔克拉玛干沙漠腹地地气相互作用参数研究[J]. 高原气象, 2011, 30(5):1294-1299.
[32]曾剑, 张强. 2008年夏季中国干旱-半干旱区陆面主要物理参数的平均特征[J]. 高原气象, 2012, 31(6):1539-1550.
[33]Vickers D, Mahrt L. Quality control and flux sampling problems for tower and aircraft data[J]. J Atmos Oceanic Technol, 1997, 14:512-526.
[34]王介民, 王维真, 奥银焕, 等. 复杂条件下湍流通量的观测与分析[J]. 地球科学进展, 2007, 22(8):791-797.
[35]Huang J P, Zhang W, Zuo J Q, et al. An overview of the semi-arid climate and environment research observatory over the Loess Plateau[J]. Adv Atmos Sci, 2008, 25(6):906-921.
[36]Monteith J L. Principles of Environmental Physics[M]. London:Edward Arnold, 1973.
[37]季国良, 马晓燕, 邹基玲, 等. 黑河地区绿洲和沙漠地面辐射收支的若干特征[J]. 干旱气象, 2003, 21(3):29-33.
[38]Gu Song, Tang Yanhong, Cui Xiaoyong, et al. Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai-Tibetan Plateau[J]. Agriculture and Forest Meteorology, 2005, 129:175-185.
[39]王超, 韦志刚, 高晓清, 等. 夏季敦煌稀疏植被下垫面物质和能量交换的观测研究[J]. 高原气象, 2012, 31(3):622-628.
[40]陈继伟, 左洪超, 王颖, 等. 西北干旱区不同下垫面反照率随太阳高度角变化的参数化方案[J]. 高原气象, 2014, 33(1):80-88, doi:10.7522/j.issn.1000-0534.2012.00168.
[41]Liu Huiqing, Huete A R. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise[J]. IEEE Trans on Geoscience and Remote Sensing, 1995, 33:457-465.
[42]王正兴, 刘闯, Huete A R. 植被指数研究进展:从AVHRR-NDVI 到MODIS-EVI[J]. 生态学报, 2003, 23(5):979-987.
[43]张强, 王胜, 卫国安. 西北地区戈壁局地陆面物理参数的研究[J]. 地球物理学报, 2003, 46(5):616-623.
[44]陈向红. 地面反射率与若干气象因子关系的初步分析[J]. 成都气象学院学报, 1999, 50(3):233-238.
[45]邵明安, 王全九, 黄明斌. 土壤物理学[M]. 北京:高等教育出版社, 2006:164-165.
[46]Gu Song, Otsuki K, Amichika M K. Albedo characteristics of Tottori Sand Dune[J]. Agric Meteor, 2000, 56(3):217-225.
[47]李德帅, 王金艳, 王式功, 等. 陇中黄土高原半干旱草地地表反照率的变化特征[J]. 高原气象, 2014, 33(1):89-96, doi:10.7522/j.issn.1000-0534.2012.00178.
[48]蒋熹. 冰雪反照率研究进展[J]. 冰川冻土, 2006, 28(5):728-738.
[49]徐兴奎, 田国良. 中国地表积雪动态分布及反照率的变化[J]. 遥感学报, 2000, 4(3):178-182.
[50]何涛, 吴学明, 贾敏芬. 青藏高原高山植物的形态和解剖结构及其对环境的适应性研究进展[J]. 生态学报, 2007, 27(6):2574-2583.
[51]高艳红, 刘伟, 冉有华, 等. 黑河流域植被覆盖度计算及其影响的中尺度模式[J]. 高原气象, 2007, 26(2):270-277.
[52]王修信, 朱启疆, 陈声海, 等. 城市公园绿地水、热与CO<sub>2</sub>通量观测与分析[J]. 生态学报, 2007, 27(8):3232-3239.
[53]李英年, 赵新全, 曹广民, 等. 海北高寒草甸地区太阳总辐射、植被反射辐射的有关特征[J]. 草地学报, 2002, 10(1):33-39.
文章导航

/