论文

天气与气候模式中次网格重力波拖曳参数化的研究

  • 钟水新 ,
  • 陈子通
展开
  • 中国气象局广州热带海洋气象研究所 广东省区域数值天气预报重点实验室, 广州 510080

收稿日期: 2013-06-24

  网络出版日期: 2015-08-28

基金资助

公益性行业(气象)科研专项(GYHY201406003, GYHY201406009); 国家自然科学基金项目(41275053); 广东科技计划项目(2012A061400012); 广东省气象局科学技术研究项目(2013A04)

Researches of Sub-Grid-Scale Gravity Wave Drag Parameterization in Numerical Weather Prediction and Climate Models

  • ZHONG Shuixin ,
  • CHEN Zitong
Expand
  • Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, China Meteorological Administration, Guangzhou 510080, China

Received date: 2013-06-24

  Online published: 2015-08-28

摘要

从数值模式物理过程地形参数化研究的角度, 回顾了次网格地形重力波拖曳参数化、地形阻塞流拖曳参数化和对流强迫拖曳参数化等方面的研究现状, 总结概括了目前模式物理过程中关于地形参数化研究中若干亟待解决的科学问题。另外, 在华南中尺度模式预报系统(GRAPES_Mars)中引进和发展了地形重力波拖曳参数化方案KA95, 讨论了KA95方案对2012年2月8-12日华南冷空气过程的影响。结果表明, 地形重力波拖曳参数化的引入较好地改善了GRAPES_Mars模式对冬、春季低层南风偏强和地面温度偏高的现象, 显示出重力波拖曳参数化对改善模式风场预报的突出作用和对减小模式系统偏差的良好应用前景。

本文引用格式

钟水新 , 陈子通 . 天气与气候模式中次网格重力波拖曳参数化的研究[J]. 高原气象, 2015 , 34(4) : 1177 -1185 . DOI: 10.7522/j.issn.1000-0534.2014.00045

Abstract

An overview of sub-grid-scale gravity wave drag parameterization in model physics of numerical weather prediction and climate simulation models is presented, as well as several scientific issues about the orographic parameterization in model physics is discussed. The present status and requirement for future development of the gravity wave drag parameterization is discussed, including the progress of gravity wave drag induced by sub-grid-scale Orography (GWDO), mountain blocking drag and convective derived gravity wave drag parameterization. The analysis of the parameterization of orographic gravity wave drag effect on the wind and temperature are emphasized, by implementing the KA95 GWDO scheme into GRAPES_TMM. The performance is evaluated against the non-GWDO parameterization by a cold air process over South China on 8-12 February 2012. The results show that the implementing of GWDO alleviates the strong south wind in the lower level and high surface temperature of forecasting caused by the south wind deviation which blocks the cold air dumping during winter and spring by GRAPES_TMM, which shows the good application of the parameterization of gravity wave drag to the wind forecast improvement and system deviation alleviation.

参考文献

[1]Lindzen R S. Turbulence and stress owing to gravity wave and tidal breakdown[J]. J Geophys Res, 1981, 86(C10):9707-9714.
[2]Matsuno T. A quasi one-dimensional model of the middle atmosphere circulation interacting with internal gravity waves[J]. J Meteor Soc Japan, 1982, 60:215-227.
[3]Holton J R. The role of gravity wave-induced drag and diffusion in the momentum budget of the mesosphere[J]. J Atmos Sci, 1982, 39:791-799.
[4]Holton J R, Beres J H, Zhou X. On the vertical scale of gravity waves excited by localized thermal forcing[J]. J Atmos Sci, 2002, 59:2019-2023.
[5]McFarlane N A. The effect of orographically excited gravity-wave drag on the general circulation of the lower stratosphere and troposphere[J]. J Atmos Sci, 1987, 44:1775-1800.
[6]Kim Y J, Arakawa A. Improvement of orographic gravity-wave parameterization using a mesoscale gravity-wave model[J]. J Atmos Sci, 1995, 52:1875-1902.
[7]McLandress C, Theodore G, Shepherd, et al. Is missing orographic gravity wave drag near 60 s the cause of the stratospheric zonal wind biases in chemistry climate models?[J]. J Atmos Sci, 2012, 69:802-818.
[8]Palmer T N, Mansfield D A. A study of wintertime circulation anomalies during past El Nio events, using a high resolution general circulation model, I:Influence of model climatology[J]. Quart J Roy Meteor Soc, 1986, 112:613-638.
[9]Boer G J. Mcfarlane N A, Laprise R, et al. The Canadian climate centre spectral atmospheric general circulation model[J]. Atmosphere-Ocean, 1984, 22(4):397-429.
[10]刘华强, 钱永甫. 包络地形和重力波拖曳对区域气候模拟效果的影响[J]. 大气科学, 2001, 25(2):209-220.
[11]Kim Y J, Doyle J D. Extension of an orographic-drag parametrization scheme to incorporate orographic anisotropy and flow blocking[J]. Quart J Roy Meteor Soc, 2005, 131:1893-1921.
[12]Hong S Y, Jung C, Chang E C, et al. Lower-tropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model[J]. Wea Forecasting, 2008, 23:523-531.
[13]徐国强, 杨学胜, 黄丽萍, 等. GRAPES中地形重力波拖曳物理过程的引进和应用试验[J]. 气象学报, 2010, 68(5):631-639.
[14]Kim Y J, Hong S Y. Interaction between the orography-induced gravity wave drag and boundary layer processes in a global atmospheric model[J]. Geophys Res Lett, 2009, 36, L12809, doi:10.1029/2008GL 037146.
[15]Zhu X, Yee J H, Swartz W H, et al. A spectral parameterization of drag, eddy diffusion, and wave heating for a three-dimensional flow induced by breaking gravity waves[J]. J Atmos Sci, 2010, 67:2520-2536.
[16]Eckermann S D. Explicitly stochastic parameterization of nonorographic gravity wave drag[J]. J Atmos Sci, 2011, 68:1749-1765.
[17]Chun H Y, Kim Y H, Choi H J, et al. Influence of gravity waves in the tropical upwelling:WACCM simulations[J]. J Atmos Sci, 2011, 68:2599-2612.
[18]Chun H Y, Goh J S, Song I S, et al. Latitudinal variations of the convective source and propagation condition of inertio-gravity waves in the tropics[J]. J Atmos Sci, 2007, 64:1603-1618.
[19]Choi H J, Chun H Y. Momentum flux spectrum of convective gravity waves. Part I:An update of a parameterization using mesoscale simulations[J]. J Atmos Sci, 2011, 68:739-759.
[20]Warner C D, McIntyre M E. On the propagation and dissipation of gravity wave spectra through a realistic middle atmosphere[J]. J Atmos Sci, 1996, 53:3213-3235.
[21]Scaife A A, Butchart N, Warner C D, et al. Impact of a spectral gravity wave parameterization on the stratosphere in the met office unified model[J]. J Atmos Sci, 2002, 59:1473-1489.
[22]Bushell A C, Jackson D R, Butchart N, et al. Sensitivity of GCM tropical middle atmosphere variability and climate to ozone and parameterized gravity wave changes[J]. J Geophys Res, 2010, 115:15-16.
[23]Iwasaki T, Yamada S, Tada K. A parameterization scheme of orographic gravity-wave drag with two different vertical partitionings. Part Ⅰ:Impacts on medium-range forecasts[J]. J Meteor Soc Japan, 1989, 67:11-27.
[24]Scinocca J F. An accurate spectral nonorographic gravity wave drag parameterization for general circulation models[J]. J Atmos Sci, 2003, 60:667-682.
[25]Scinocca J F, Sutherland B R. Self-acceleration in the parameterization of orographic gravity wave drag[J]. J Atmos Sci, 2010, 67:2537-2546.
[26]Wallace J M, Hsu H H. Ultra-long waves and two-dimensional Rossby waves[J]. J Atmos Sci, 1983, 40:2211-2219.
[27]Mullen S L. The impact of an envelope orography on low-frequency variability and blocking in a low-resolution general circulation model[J]. J Climate, 1994, 7(12):1815-1826.
[28]Lott F, Miller M J. A new subgrid-scale orographic parameterization:Its formulation and testing[J]. Quart J Roy Meteor Soc, 1997, 123:101-127.
[29]Mesinger F, Collins W G. Review of the representation of mountains in numerical weather prediction models[R]. Proc. Seminar/Workshop on observation, theory and modeling of orographic effects. 2:ECMWF, Shinfield Park, Reading, U. K. 15-20 September 1986, 2:1-28.
[30]Helfand H M, Labraga J C. Design of a nonsingular level 2.5 second-order closure model for the prediction of atmospheric turbulence[J]. J Atmos Sci, 1988, 45:113-132.
[31]Miller M J, Palmer T N, Swinkbank R. Parameterization and influence subgrid-scale orography in general circulation and numerical weather prediction model[J]. Meteor Atmos Phys, 1989, 40:84-109.
[32]Broccoli A J, Manabe S. The effects of orography on midlatitude northern hemisphere dry climates[J]. J Climate, 1992, 5:1181-1201.
[33]钱永甫. 包络地形和重力波拖曳对气候模拟效果的影响[J]. 应用气象学报, 2000, 11(1):13-20.
[34]Alpert J C. 'Sub-grid scale mountain blocking at NCEP'. (CD-ROM) Proceedings of the 16<sup>th</sup> conference on NWP, 11-15 January 2004, Seattle, Washington[R]. American Meteorological Society, Boston, USA, 2004.
[35]Webster S, Brown A R, Cameron D R, et al. Improvements to the representation of orography in the Met Office Unified Model[J]. Quart J Roy Meteor Soc, 2003, 129:1989-2010.
[36]Iwasaki T, Sumi A. Impact of envelope orography on JMA's Hemispheric NWP forecasts for winter circulation[J]. J Meteor Soc Japan, 1986, 64:245-258.
[37]Tibaldi S. Envelope orography and the maintenance of quasi-stationary waves in the ECMWF model[J]. Adv Geophys, 1986, 29:339-374.
[38]李博, 刘黎平, 赵思雄, 等. 局地低矮地形对华南暴雨影响的数值试验[J]. 高原气象, 2013, 32(6):1638-1650, doi:10.7522/j.issn.1000-0534.2012.00156.
[39]赵玉春, 许小峰, 崔春光. 中尺度地形对梅雨锋暴雨影响的个例研究[J]. 高原气象, 2012, 31(5):1268-1280.
[40]刘裕禄, 黄勇. 黄山山脉地形对暴雨降水增幅条件研究[J]. 高原气象, 2013, 32(2):608-620, doi:10.7522/j.issn.1000-0534.2012.00059.
[41]王腾蛟, 张镭, 胡向军, 等. WRF模式对黄土高原丘陵地形条件下夏季边界层结构的数值模拟[J]. 高原气象, 2013, 32(5):1261-1271, doi:10.7522/j.issn.1000-0534.2012.00121.
[42]何光碧, 屠妮妮, 张利红, 等. 青藏高原东侧一次低涡暴雨过程地形影响的数值试验[J]. 高原气象, 2013, 32(6):1546-1556, doi:10.7522/j.issn.1000-0534.2012.00150.
[43]钱永甫. 包络地形和重力波拖曳对气候模拟效果的影响[J]. 应用气象学报, 2000, 11(1):13-20.
[44]高守亭, 冉令坤. 重力波上传破碎对中层纬向平均流拖曳的参数化方案[J]. 科学通报, 2003, 48(7):726-729.
[45]王元, 唐锦赟, 伍荣生. 一个双波地形重力波拖曳参数化方案[J]. 气象学报, 2007, 65(5):733-743.
[46]徐国强, 杨学胜, 黄丽萍, 等. GRAPES中地形重力波拖曳物理过程的引进和应用试验[J]. 气象学报, 2010, 68(5):631-639.
[47]薛纪善, 陈德辉, 沈学顺, 等. 数值预报系统GRAPES的科学设计与应用[M]. 北京:气象出版社, 2008:168.
[48]钟水新, 陈子通, 戴光丰, 等. 地形重力波拖曳参数化对热带气旋强度和路径预报影响的研究[J]. 大气科学, 2014, 38(2):273-284.
[49]Taylor M J, Hapgood M A. Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emissions[J]. Planetary and Space Science, 1988, 36:975-985.
[50]Dewan EM, Picard R H, O'Neil R R, et al. MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratosphere[J]. Geophys Res Lett, 1998, 25:939-942.
[51]Song I S, Chun H Y, Lane T P. Generation mechanisms of convectively forced internal gravity waves and their propagation to the stratosphere[J]. J Atmos Sci, 2003, 60:1960-1980.
[52]Song I S, Chun H Y. Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I:Theory[J]. J Atmos Sci, 2005, 62:107-124.
[53]Chun H Y, Goh J S, Song I S, et al. Latitudinal variations of the convective source and propagation condition of inertio-gravity waves in the tropics[J]. J Atmos Sci, 2007, 64:1603-1618.
[54]Chun H Y, Kim Y H, Choi H J, et al. Influence of gravity waves in the tropical upwelling:WACCM simulations[J]. J Atmos Sci, 2011, 68:2599-2612.
[55]Chun H Y, Song M D, Kim J W, et al. Effects of gravity wave drag induced by cumulus convection on the atmospheric general circulation[J]. J Atmos Sci, 2001, 58:302-319.
[56]Lane T P, Michael J R. Convectively generated gravity waves and their effect on the cloud environmen[J]. J Atmos Sci, 2001, 58:2427-2440.
[57]Lane T P, Michael J R, et al. Numerical modeling of gravity wave generation by deep tropical convection[J]. J Atmos Sci, 2001, 58:1249-1274.
[58]Lane T P, Mitchell W, et al. Stratospheric gravity waves generated by multiscale tropical convection[J]. J Atmos Sci, 2008, 65:2598-2614.
[59]Alexander M J, Holton J R. A model study of zonal forcing in the equatorial stratosphere by convectively induced gravity waves[J]. J Atmos Sci, 1997, 54:408-419.
[60]Garcia R R, Dunkerton T J, Lieberman R S, et al. Climatology of the semiannual oscillation of the tropical middle atmosphere[J]. J Geophys Res, 1997, 102:26019-26032.
[61]Baldwin M P. The quasi-biennial oscillation[J]. Rev Geophys, 2001, 39:179-230.
[62]Garcia, Solomon. The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere[J]. J Geophys Res, 1985, 90:3850-3868.
[63]Fritts D C, Vincent R A. Mesospheric momentum flux studies at Adelaide, Australia:Observations and a gravity wave tidal interaction model[J]. J Atmos Sci, 1987, 44:605-619.
[64]ChunH Y, Baik J J. An updated parameterization of convectively forced gravity wave drag for use in large-scale models[J]. J Atmos Sci, 2002, 59:1006-1017.
[65]Richter J H, Garcia R R. On the forcing of the mesospheric semi-annual oscillation in the whole atmosphere community climate model[J]. Geophys Res Lett, 2006, 33, L01806, doi:10.1029/2005GL024378.
[66]Salby, Murry L, Rolando R, et al. Transient response to localized episodic heating in the tropics. Part I:Excitation and short-time near-field behavior[J]. J Atmos Sci, 1987, 44:458-498.
[67]Bergman J W, Salby M L. Equatorial wave activity derived from fluctuations in observed convection[J]. J Atmos Sci, 1994, 51:3791-3806.
[68]Garcia R R. The role of equatorial waves in the semiannual oscillation of the middle atmosphere[C]//Siskind D E, Eckermann S D, Summers M E, eds. Atmospheric Science Across the Stratopause. AGU Geophysical Monograph Series, 2000, 123:161-176.
[69]Smith S A, Fritts D C, Vanzandt T E. Evidence for a saturated spectrum of atmospheric gravity waves[J]. J Atmos Sci, 1987, 44:1404-1410.
[70]Lin Y L. Two-dimensional response of a stably stratified shear flow to diabatic heating[J]. J Atmos Sci, 1987, 44:1375-1393.
[71]Chun H Y. Enhanced response of a stably stratified two-layer atmosphere to low-level heating[J]. J Meteor Soc Japan, 1995, 73:685-696.
[72]Baik J J, Hwang H S, Chun H Y. Transient critical level effect for internal gravity waves in a stably stratified flow with thermal forcing[J]. Phys Fluids, 1999, 11:238-240.
[73]Baik J J, Hwang H S, Chun H Y. Transient, linear dynamics of a stably stratified shear flow with thermal forcing and a critical level[J]. J Atmos Sci, 1999, 56:483-499.
[74]Clark T L, Hauf T, Kuettner J P. Convectively forced internal gravity waves:Results from two-dimensional numerical experiments[J]. Quart J Roy Meteor Soc, 1986, 112:899-925.
[75]Pfister L, Scott S, Loewenstein M. Mesoscale disturbances in the tropical stratosphere excited by convection:Observations and effects on the stratospheric momentum budget[J]. J Atmos Sci, 1993, 50:1058-1075.
[76]Kershaw R. Parameterization of momentum transport by convectively generated gravity waves[J]. Quart J Roy Meteor Soc, 1995, 121:1023-1040.
[77]Bosseut C, Déqué M, Cariolle D. Impact of a simple parameterization of convective gravity-wave drag in a stratosphere-troposphere general circulation model and its sensitivity to vertical resolution[J]. Annales Geophysicae, 1998, 16(2):238-239.
[78]Chun H Y, Baik J J. Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models[J]. J Atmos Sci, 1998, 55:3299-3310.
[79]Choi H J, Chun H Y. Momentum flux spectrum of convective gravity waves. Part I:An update of a parameterization using mesoscale simulations[J]. J Atmos Sci, 2011, 68:739-759.
[80]Choi J, An S I, Yeh S W, et al. ENSO-like and ENSO-induced tropical Pacific decadal variability in CGCMs[J]. J Climate, 2013, 26:1485-1501.
文章导航

/