[1]Lindzen R S. Turbulence and stress owing to gravity wave and tidal breakdown[J]. J Geophys Res, 1981, 86(C10):9707-9714.
[2]Matsuno T. A quasi one-dimensional model of the middle atmosphere circulation interacting with internal gravity waves[J]. J Meteor Soc Japan, 1982, 60:215-227.
[3]Holton J R. The role of gravity wave-induced drag and diffusion in the momentum budget of the mesosphere[J]. J Atmos Sci, 1982, 39:791-799.
[4]Holton J R, Beres J H, Zhou X. On the vertical scale of gravity waves excited by localized thermal forcing[J]. J Atmos Sci, 2002, 59:2019-2023.
[5]McFarlane N A. The effect of orographically excited gravity-wave drag on the general circulation of the lower stratosphere and troposphere[J]. J Atmos Sci, 1987, 44:1775-1800.
[6]Kim Y J, Arakawa A. Improvement of orographic gravity-wave parameterization using a mesoscale gravity-wave model[J]. J Atmos Sci, 1995, 52:1875-1902.
[7]McLandress C, Theodore G, Shepherd, et al. Is missing orographic gravity wave drag near 60 s the cause of the stratospheric zonal wind biases in chemistry climate models?[J]. J Atmos Sci, 2012, 69:802-818.
[8]Palmer T N, Mansfield D A. A study of wintertime circulation anomalies during past El Nio events, using a high resolution general circulation model, I:Influence of model climatology[J]. Quart J Roy Meteor Soc, 1986, 112:613-638.
[9]Boer G J. Mcfarlane N A, Laprise R, et al. The Canadian climate centre spectral atmospheric general circulation model[J]. Atmosphere-Ocean, 1984, 22(4):397-429.
[10]刘华强, 钱永甫. 包络地形和重力波拖曳对区域气候模拟效果的影响[J]. 大气科学, 2001, 25(2):209-220.
[11]Kim Y J, Doyle J D. Extension of an orographic-drag parametrization scheme to incorporate orographic anisotropy and flow blocking[J]. Quart J Roy Meteor Soc, 2005, 131:1893-1921.
[12]Hong S Y, Jung C, Chang E C, et al. Lower-tropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model[J]. Wea Forecasting, 2008, 23:523-531.
[13]徐国强, 杨学胜, 黄丽萍, 等. GRAPES中地形重力波拖曳物理过程的引进和应用试验[J]. 气象学报, 2010, 68(5):631-639.
[14]Kim Y J, Hong S Y. Interaction between the orography-induced gravity wave drag and boundary layer processes in a global atmospheric model[J]. Geophys Res Lett, 2009, 36, L12809, doi:10.1029/2008GL 037146.
[15]Zhu X, Yee J H, Swartz W H, et al. A spectral parameterization of drag, eddy diffusion, and wave heating for a three-dimensional flow induced by breaking gravity waves[J]. J Atmos Sci, 2010, 67:2520-2536.
[16]Eckermann S D. Explicitly stochastic parameterization of nonorographic gravity wave drag[J]. J Atmos Sci, 2011, 68:1749-1765.
[17]Chun H Y, Kim Y H, Choi H J, et al. Influence of gravity waves in the tropical upwelling:WACCM simulations[J]. J Atmos Sci, 2011, 68:2599-2612.
[18]Chun H Y, Goh J S, Song I S, et al. Latitudinal variations of the convective source and propagation condition of inertio-gravity waves in the tropics[J]. J Atmos Sci, 2007, 64:1603-1618.
[19]Choi H J, Chun H Y. Momentum flux spectrum of convective gravity waves. Part I:An update of a parameterization using mesoscale simulations[J]. J Atmos Sci, 2011, 68:739-759.
[20]Warner C D, McIntyre M E. On the propagation and dissipation of gravity wave spectra through a realistic middle atmosphere[J]. J Atmos Sci, 1996, 53:3213-3235.
[21]Scaife A A, Butchart N, Warner C D, et al. Impact of a spectral gravity wave parameterization on the stratosphere in the met office unified model[J]. J Atmos Sci, 2002, 59:1473-1489.
[22]Bushell A C, Jackson D R, Butchart N, et al. Sensitivity of GCM tropical middle atmosphere variability and climate to ozone and parameterized gravity wave changes[J]. J Geophys Res, 2010, 115:15-16.
[23]Iwasaki T, Yamada S, Tada K. A parameterization scheme of orographic gravity-wave drag with two different vertical partitionings. Part Ⅰ:Impacts on medium-range forecasts[J]. J Meteor Soc Japan, 1989, 67:11-27.
[24]Scinocca J F. An accurate spectral nonorographic gravity wave drag parameterization for general circulation models[J]. J Atmos Sci, 2003, 60:667-682.
[25]Scinocca J F, Sutherland B R. Self-acceleration in the parameterization of orographic gravity wave drag[J]. J Atmos Sci, 2010, 67:2537-2546.
[26]Wallace J M, Hsu H H. Ultra-long waves and two-dimensional Rossby waves[J]. J Atmos Sci, 1983, 40:2211-2219.
[27]Mullen S L. The impact of an envelope orography on low-frequency variability and blocking in a low-resolution general circulation model[J]. J Climate, 1994, 7(12):1815-1826.
[28]Lott F, Miller M J. A new subgrid-scale orographic parameterization:Its formulation and testing[J]. Quart J Roy Meteor Soc, 1997, 123:101-127.
[29]Mesinger F, Collins W G. Review of the representation of mountains in numerical weather prediction models[R]. Proc. Seminar/Workshop on observation, theory and modeling of orographic effects. 2:ECMWF, Shinfield Park, Reading, U. K. 15-20 September 1986, 2:1-28.
[30]Helfand H M, Labraga J C. Design of a nonsingular level 2.5 second-order closure model for the prediction of atmospheric turbulence[J]. J Atmos Sci, 1988, 45:113-132.
[31]Miller M J, Palmer T N, Swinkbank R. Parameterization and influence subgrid-scale orography in general circulation and numerical weather prediction model[J]. Meteor Atmos Phys, 1989, 40:84-109.
[32]Broccoli A J, Manabe S. The effects of orography on midlatitude northern hemisphere dry climates[J]. J Climate, 1992, 5:1181-1201.
[33]钱永甫. 包络地形和重力波拖曳对气候模拟效果的影响[J]. 应用气象学报, 2000, 11(1):13-20.
[34]Alpert J C. 'Sub-grid scale mountain blocking at NCEP'. (CD-ROM) Proceedings of the 16<sup>th</sup> conference on NWP, 11-15 January 2004, Seattle, Washington[R]. American Meteorological Society, Boston, USA, 2004.
[35]Webster S, Brown A R, Cameron D R, et al. Improvements to the representation of orography in the Met Office Unified Model[J]. Quart J Roy Meteor Soc, 2003, 129:1989-2010.
[36]Iwasaki T, Sumi A. Impact of envelope orography on JMA's Hemispheric NWP forecasts for winter circulation[J]. J Meteor Soc Japan, 1986, 64:245-258.
[37]Tibaldi S. Envelope orography and the maintenance of quasi-stationary waves in the ECMWF model[J]. Adv Geophys, 1986, 29:339-374.
[38]李博, 刘黎平, 赵思雄, 等. 局地低矮地形对华南暴雨影响的数值试验[J]. 高原气象, 2013, 32(6):1638-1650, doi:10.7522/j.issn.1000-0534.2012.00156.
[39]赵玉春, 许小峰, 崔春光. 中尺度地形对梅雨锋暴雨影响的个例研究[J]. 高原气象, 2012, 31(5):1268-1280.
[40]刘裕禄, 黄勇. 黄山山脉地形对暴雨降水增幅条件研究[J]. 高原气象, 2013, 32(2):608-620, doi:10.7522/j.issn.1000-0534.2012.00059.
[41]王腾蛟, 张镭, 胡向军, 等. WRF模式对黄土高原丘陵地形条件下夏季边界层结构的数值模拟[J]. 高原气象, 2013, 32(5):1261-1271, doi:10.7522/j.issn.1000-0534.2012.00121.
[42]何光碧, 屠妮妮, 张利红, 等. 青藏高原东侧一次低涡暴雨过程地形影响的数值试验[J]. 高原气象, 2013, 32(6):1546-1556, doi:10.7522/j.issn.1000-0534.2012.00150.
[43]钱永甫. 包络地形和重力波拖曳对气候模拟效果的影响[J]. 应用气象学报, 2000, 11(1):13-20.
[44]高守亭, 冉令坤. 重力波上传破碎对中层纬向平均流拖曳的参数化方案[J]. 科学通报, 2003, 48(7):726-729.
[45]王元, 唐锦赟, 伍荣生. 一个双波地形重力波拖曳参数化方案[J]. 气象学报, 2007, 65(5):733-743.
[46]徐国强, 杨学胜, 黄丽萍, 等. GRAPES中地形重力波拖曳物理过程的引进和应用试验[J]. 气象学报, 2010, 68(5):631-639.
[47]薛纪善, 陈德辉, 沈学顺, 等. 数值预报系统GRAPES的科学设计与应用[M]. 北京:气象出版社, 2008:168.
[48]钟水新, 陈子通, 戴光丰, 等. 地形重力波拖曳参数化对热带气旋强度和路径预报影响的研究[J]. 大气科学, 2014, 38(2):273-284.
[49]Taylor M J, Hapgood M A. Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emissions[J]. Planetary and Space Science, 1988, 36:975-985.
[50]Dewan EM, Picard R H, O'Neil R R, et al. MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratosphere[J]. Geophys Res Lett, 1998, 25:939-942.
[51]Song I S, Chun H Y, Lane T P. Generation mechanisms of convectively forced internal gravity waves and their propagation to the stratosphere[J]. J Atmos Sci, 2003, 60:1960-1980.
[52]Song I S, Chun H Y. Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I:Theory[J]. J Atmos Sci, 2005, 62:107-124.
[53]Chun H Y, Goh J S, Song I S, et al. Latitudinal variations of the convective source and propagation condition of inertio-gravity waves in the tropics[J]. J Atmos Sci, 2007, 64:1603-1618.
[54]Chun H Y, Kim Y H, Choi H J, et al. Influence of gravity waves in the tropical upwelling:WACCM simulations[J]. J Atmos Sci, 2011, 68:2599-2612.
[55]Chun H Y, Song M D, Kim J W, et al. Effects of gravity wave drag induced by cumulus convection on the atmospheric general circulation[J]. J Atmos Sci, 2001, 58:302-319.
[56]Lane T P, Michael J R. Convectively generated gravity waves and their effect on the cloud environmen[J]. J Atmos Sci, 2001, 58:2427-2440.
[57]Lane T P, Michael J R, et al. Numerical modeling of gravity wave generation by deep tropical convection[J]. J Atmos Sci, 2001, 58:1249-1274.
[58]Lane T P, Mitchell W, et al. Stratospheric gravity waves generated by multiscale tropical convection[J]. J Atmos Sci, 2008, 65:2598-2614.
[59]Alexander M J, Holton J R. A model study of zonal forcing in the equatorial stratosphere by convectively induced gravity waves[J]. J Atmos Sci, 1997, 54:408-419.
[60]Garcia R R, Dunkerton T J, Lieberman R S, et al. Climatology of the semiannual oscillation of the tropical middle atmosphere[J]. J Geophys Res, 1997, 102:26019-26032.
[61]Baldwin M P. The quasi-biennial oscillation[J]. Rev Geophys, 2001, 39:179-230.
[62]Garcia, Solomon. The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere[J]. J Geophys Res, 1985, 90:3850-3868.
[63]Fritts D C, Vincent R A. Mesospheric momentum flux studies at Adelaide, Australia:Observations and a gravity wave tidal interaction model[J]. J Atmos Sci, 1987, 44:605-619.
[64]ChunH Y, Baik J J. An updated parameterization of convectively forced gravity wave drag for use in large-scale models[J]. J Atmos Sci, 2002, 59:1006-1017.
[65]Richter J H, Garcia R R. On the forcing of the mesospheric semi-annual oscillation in the whole atmosphere community climate model[J]. Geophys Res Lett, 2006, 33, L01806, doi:10.1029/2005GL024378.
[66]Salby, Murry L, Rolando R, et al. Transient response to localized episodic heating in the tropics. Part I:Excitation and short-time near-field behavior[J]. J Atmos Sci, 1987, 44:458-498.
[67]Bergman J W, Salby M L. Equatorial wave activity derived from fluctuations in observed convection[J]. J Atmos Sci, 1994, 51:3791-3806.
[68]Garcia R R. The role of equatorial waves in the semiannual oscillation of the middle atmosphere[C]//Siskind D E, Eckermann S D, Summers M E, eds. Atmospheric Science Across the Stratopause. AGU Geophysical Monograph Series, 2000, 123:161-176.
[69]Smith S A, Fritts D C, Vanzandt T E. Evidence for a saturated spectrum of atmospheric gravity waves[J]. J Atmos Sci, 1987, 44:1404-1410.
[70]Lin Y L. Two-dimensional response of a stably stratified shear flow to diabatic heating[J]. J Atmos Sci, 1987, 44:1375-1393.
[71]Chun H Y. Enhanced response of a stably stratified two-layer atmosphere to low-level heating[J]. J Meteor Soc Japan, 1995, 73:685-696.
[72]Baik J J, Hwang H S, Chun H Y. Transient critical level effect for internal gravity waves in a stably stratified flow with thermal forcing[J]. Phys Fluids, 1999, 11:238-240.
[73]Baik J J, Hwang H S, Chun H Y. Transient, linear dynamics of a stably stratified shear flow with thermal forcing and a critical level[J]. J Atmos Sci, 1999, 56:483-499.
[74]Clark T L, Hauf T, Kuettner J P. Convectively forced internal gravity waves:Results from two-dimensional numerical experiments[J]. Quart J Roy Meteor Soc, 1986, 112:899-925.
[75]Pfister L, Scott S, Loewenstein M. Mesoscale disturbances in the tropical stratosphere excited by convection:Observations and effects on the stratospheric momentum budget[J]. J Atmos Sci, 1993, 50:1058-1075.
[76]Kershaw R. Parameterization of momentum transport by convectively generated gravity waves[J]. Quart J Roy Meteor Soc, 1995, 121:1023-1040.
[77]Bosseut C, Déqué M, Cariolle D. Impact of a simple parameterization of convective gravity-wave drag in a stratosphere-troposphere general circulation model and its sensitivity to vertical resolution[J]. Annales Geophysicae, 1998, 16(2):238-239.
[78]Chun H Y, Baik J J. Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models[J]. J Atmos Sci, 1998, 55:3299-3310.
[79]Choi H J, Chun H Y. Momentum flux spectrum of convective gravity waves. Part I:An update of a parameterization using mesoscale simulations[J]. J Atmos Sci, 2011, 68:739-759.
[80]Choi J, An S I, Yeh S W, et al. ENSO-like and ENSO-induced tropical Pacific decadal variability in CGCMs[J]. J Climate, 2013, 26:1485-1501.