论文

拉萨一次热力雷暴的结构特征及数值模拟

  • 王天义 ,
  • 朱克云 ,
  • 张杰 ,
  • 周筠珺
展开
  • 成都信息工程大学 大气科学学院, 高原大气与环境四川省重点实验室, 成都 610225;2. 成都军区空军气象中心, 成都 610041

收稿日期: 2013-12-16

  网络出版日期: 2015-10-28

基金资助

国家自然科学基金项目(91537214, 91437113)

Structural Features and Numerical Simulation of a Thermodynamic Thunderstorm in Lhasa

  • WANG Tianyi ,
  • ZHU Keyun ,
  • ZHANG Jie ,
  • ZHOU Yunjun
Expand
  • Institute of Atmospheric Science, Chengdu University of Information Technology, and Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu 610225, China;2. Air Force Meteorological Center of Chengdu Military Region, Chengdu 610041, China

Received date: 2013-12-16

  Online published: 2015-10-28

摘要

利用三维对流风暴云模式对拉萨地区的一次热力雷暴进行了数值模拟和结构特征分析, 结果表明, 该模式较好地模拟出了此次高原地区热力雷暴在发生、成熟、消亡阶段的结构特征。热力雷暴发生阶段上升气流较小, 成熟阶段热力雷暴的总水汽混合比最大, 上升速度也达到最大值, 随后热力雷暴单体不断下降, 进入消亡阶段。热力雷暴的水成物粒子(冰晶、雪、霰和雹粒子)中, 以冰晶粒子为主, 整体生成量最高, 但在热力雷暴初期阶段, 以霰粒子为主, 热力雷暴水汽含量偏少, 出现在日最高温度之后, 有着高原热力雷暴的独特特征.热力雷暴风场结构表现为低层辐合、高层辐散。高原热力雷暴的不稳定能量较小, 午后热力扰动是主要的触发机制。

本文引用格式

王天义 , 朱克云 , 张杰 , 周筠珺 . 拉萨一次热力雷暴的结构特征及数值模拟[J]. 高原气象, 2015 , 34(5) : 1237 -1248 . DOI: 10.7522/j.issn.1000-0534.2014.00054

Abstract

The numerical simulation and the structural features of a thermodynamic thunderstorm over Lhasa were studied by using the three dimensional hailstorm numerical model.The results indicate that: the occurring, aging and weakening features of the thermodynamic thunderstorm over the Lhasa area were successfully presented by this model.The updraft was relatively weak when the thermodynamic thunderstorm was just happened.The total water vapor mixing ratio reached maximum as well as the ascending velocity in the mature stage, and then it reached the extinction phase when the thermodynamic thunderstorm cells declined later.Crystal ice particles were of the highest production and of the majority among hydrometeors (ice, snow, graupel and hail particles), but the graupel particles dominated at the primary stage of the thermodynamic thunderstorm.The water vapor within the thermodynamic thunderstorm was little and appeared after the daily maximum temperature, which is the unique feature of the thermodynamic thunderstorm over the plateau.The vector wind showed a convergence in the low-level and divergence in the upper level.Instable energy is relatively small and thermal perturbation in the afternoon is the main trigger of the thermodynamic thunderstorm.The CAPE value of this thunderstorm is 186.6 J·kg-1, which is potentially instable.But because of the strong radiation in Tibet, after noon, it can turn into convective instable leading to strong convection.There is less water vapor in the thunderstorm in Tibet, which is different from the thunderstorm over plain.

参考文献

[1]乔全明, 张雅高.青藏高原天气学[M].北京: 气象出版社, 1994: 1-18.
[2]李国平.青藏高原动力气象学[M].北京: 气象出版社, 2002: 69-106.
[3]Wakimoto R M.Convectively driven high wind events[J].Meteorological Monographs, 2001, 50: 255-298.
[4]王天义, 朱克云, 张杰, 等.2010-2011年西藏雷暴的雷达回波统计特征分析[J].成都信息工程学院学报, 2013, 28(3): 267-273.
[5]袁铁, 郄秀书.青藏高原中部闪电活动与相关气象要素季节变化的相关分析[J].气象学报, 2005, 63(1): 123-127.
[6]张翠华, 言穆弘, 董万胜, 等.青藏高原雷暴天气层结特征分析[J].高原气象, 2005, 24(5): 741-747.
[7]张廷龙, 郄秀书, 言穆弘, 等.中国内陆高原不同海拔地区雷暴电学特征成因的初步分析[J].高原气象, 2009, 28(5): 1006-1017.
[8]任景轩, 朱克云, 张杰, 等.近30 年西藏地区雷暴变化特征[J].气象科技, 2011, 39(3): 289-294.
[9]朱克云, 孙照渤, 张琪, 等.西藏地区雷暴与大气热源关系研究[J].大气科学, 2012, 36(6): 1093-1100.
[10]尤伟, 臧增亮, 潘晓滨, 等.夏季青藏高原雷暴天气及其天气学特征的统计分析[J].高原气象, 2012, 31(6): 1523-1529.
[11]李典, 白爱娟, 黄盛军.利用TRMM卫星资料对青藏高原地区强对流天气特征分析[J].高原气象, 2012, 31(2): 304-311.
[12]潘留杰, 张宏芳, 王楠, 等.陕西一次强对流天气过程的中尺度及雷达观测分析[J].高原气象, 2013, 32(1): 278-289, doi: 10.7522/j.issn.1000-0534.2013.00027.
[13]李桑, 龚道溢.1980-2010年中国南方雷暴频次的统计特征及其变化[J].高原气象, 2015, 34(2): 503-514, doi: 10.7522/j.issn.1000-0534.2013.00171.
[14]王秀明, 俞小鼎, 周小刚, 等.“6.3”区域致灾雷暴大风形成及维持原因分析[J].高原气象, 2012, 31(2): 504-514.
[15]拉巴次仁, 来志云, 索朗白玛, 等.近40年西藏地区雷暴事件的时空变化特征[J].高原气象, 2014, 33(4): 1131-1134, doi: 10.7522/j.issn.1000-0534.2013.00067.
[16]陈洪滨, 朱彦良.雷暴探测研究的进展[J].大气科学, 2012, 36(2): 411-422.
[17]俞小鼎, 周小刚, 王秀明.雷暴与强对流临近天气预报技术进展[J].气象学报, 2012, 70(3): 311-337.
[18]孔凡铀, 黄美元, 徐华英.对流云中冰相过程的三维数值模拟(I): 模式建立及冷云参数化[J].大气科学, 1990, 14(4): 441-453.
[19]孔凡铀, 黄美元, 徐华英.对流云中冰相过程的三维数值模拟(Ⅱ): 繁生过程作用[J].大气科学, 1991, 15(6): 78-88.
[20]洪延超.积层混合云数值模拟研究(I)—模式及其微物理过程参数化[J].气象学报, 1996, 54(5): 544-557.
[21]孙学金, 宫福久, 李子华.初始扰动对冰雹云发展影响的数值研究[J].气象科学, 1998, 18(2): 113-120.
[22]许焕斌, 王思微.三维中-β尺度模式研究: 一次气旋暖区锋生活动的中尺度结构的数值模拟试验[J].气象学报, 1994, 52(2): 165-171.
[23]肖辉, 王孝波, 周非非, 等.强降水云物理过程的三维数值模拟研究[J].大气科学, 2004, 28(3): 385-404.
[24]刘术艳, 肖辉, 杜秉玉, 等.北京一次强单体雹暴的三维数值模拟[J].大气科学, 2004, 28(3): 455-470.
[25]程相坤, 杨慧玲, 李红斌, 等.一次强单体雹暴结构和成雹机制的数值模拟研究[J].高原气象, 2012, 31(3): 836-846.
[26]裴春明, 孙颖, 王冰, 等.西藏地区对流云系的天气学模式特征[J].安徽农业科学, 2012, 40(3): 1771-1774.
文章导航

/