论文

三维云场分布诊断方法的研究

  • 蔡淼 ,
  • 周毓荃 ,
  • 欧建军 ,
  • 刘建朝 ,
  • 蔡兆鑫
展开
  • 中国气象科学研究院, 北京 100081;2. 上海海洋气象台, 上海 201300;3. 吉林省人工影响天气办公室, 长春 130062;4. 山西省人工降雨防雹办公室, 太原 030032

收稿日期: 2013-10-19

  网络出版日期: 2015-10-28

基金资助

国家高新技术“863”课题(2012AA120909); 国家自然科学基金项目(41275150)

Study on Diagnosing Three Dimensional Cloud Region

  • Cai Miao ,
  • Zhou Yuquan ,
  • Ou Jianjun ,
  • Liu Jianzhao ,
  • Cai Zhaoxin
Expand
  • China Academy of Meteorological Sciences, Beijing 100081, China;2. Shanghai Marine and Meteorological Center, Shanghai 201300, China;3. Weather Modification Office of Jilin Province, Changchun 130062, China;4. Weather Modification Office in Shanxi Province, Taiyuan 030032, China

Received date: 2013-10-19

  Online published: 2015-10-28

摘要

利用2007-2008年Cloudsat云检测产品与ECMWF再分析资料的相对湿度进行统计分析, 得出了中国云內外相对湿度判別阈值及其随高度的变化, 提出了基于再分析资料的三维云场分布诊断方法, 应用于实例三维云场诊断, 并与卫星、雷达、地面云降水观测等资料进行了对比分析, 得到的主要结论有: (1)Cloudsat云判别有效值>20的云区位置与Cloudsat辅助产品给出的ECWMF再分析资料的相对湿度高值区有较好的时空对应; (2)不同高度范围的云内相对湿度都呈单峰型分布, 峰值在相对湿度100%附近, 晴空相对湿度受当地大气环境影响, 各地各高度都有差别; (3)通过相对湿度对云区和晴空的TS评分测试, 得出了诊断云区的相对湿度阈值及其垂直分布; (4)利用NCEP再分析资料对中国三维云场的分布进行个例诊断应用, 与卫星、雷达和地面云降水观测的对比表明, 云区附近的湿度梯度大, 相对湿度阈值法诊断的云区总体比较稳定; (5)诊断的云区与上升气流区对应较好, 云区和晴空的分布与卫星TBB观测大致对应, 云厚(即云格点总数)与光学厚度和地面降水的分布比较一致; (6)云场垂直剖面可以清晰地看出其分布同天气系统的关系, 诊断的云区与地面云观测比较一致, 云层密实深厚的区域通常对应着地面降水; (7)单点的云垂直结构随时间演变与当地的雷达和地面云降水观测都比较一致。

本文引用格式

蔡淼 , 周毓荃 , 欧建军 , 刘建朝 , 蔡兆鑫 . 三维云场分布诊断方法的研究[J]. 高原气象, 2015 , 34(5) : 1330 -1344 . DOI: 10.7522/j.issn.1000-0534.2014.00061

Abstract

Cloud mask and relative humidity (RH) provided by Cloudsat products from 2007 to 2008 are statistical analyzed to get RH Threshold between cloud and clear sky and its variation with height.A diagnosis method is proposed based on reanalysis data and applied to three-dimensional cloud field diagnosis of a real case.Diagnostic cloud field was compared to satellite, radar and other cloud precipitation observations.Main results are as follows.Cloud region where cloud mask is bigger than 20 has a good space and time corresponding to the high value relative humidity region, which is provide by ECWMF AUX product.Statistical analysis of the RH frequency distribution within and outside cloud indicated that, distribution of RH in cloud at different height range shows single peak type, and the peak is near a RH value of 100%.Local atmospheric environment affects the RH distribution outside cloud, which leads to RH distribution vary in different region or different height.RH threshold and its vertical distribution used for cloud diagnostic was analyzed from Threat Score method The method is applied to a three dimension cloud diagnosis case study based on NCEP reanalysis data, and the diagnostic cloud field is compared to satellite, radar and cloud precipitation observation on ground.It is found that, RH gradient is very big around cloud region and diagnosed cloud area by RH threshold method is relatively stable.Diagnostic cloud area has a good corresponding to updraft region.The cloud and clear sky distribution corresponds to satellite the TBB observations overall.Diagnostic cloud depth, or sum cloud layers distribution consists with optical thickness and precipitation on ground better.The cloud vertical profile reveals the relation between cloud vertical structure and weather system clearly.Diagnostic cloud distribution correspond to cloud observations on ground very well.Precipitation on ground usually can be observed at deep-developed cloud area.The time series of cloud vertical structure evolution at single point is well consistent with local radar and surface cloud and precipitation observations.In summary, diagnosis of three-dimensional cloud field and its distribution by relative humidity threshold from the reanalysis data are in good agreement with the development and movement of cloud precipitation and weather systems.It can be well applied to weather, climate and weather modification research.

参考文献

[1]Rossow W B, Schiffer R A.ISCCP cloud data products[J].Bull Amer Meteor Soc, 1991, 72(1): 2-20.
[2]Rossow W B, Walker A W, Garder L C, et al.Comparison of ISCCP and other cloud amounts[J].J Climate, 1993, 6(12): 2394-2416.
[3]Lin B, Rossow W B.Observations of cloud liquid water path over oceans: Optical and microwave remote sensing methods[J].J Geophys Res, 1994, 99(D10): 907-926.
[4]魏丽, 钟强.中国大陆卫星反演云参数的评估[J].高原气象, 1996, 15(2): 147-156.
[5]李兴宇, 郭学良, 朱江.中国地区空中云水资源气候分布特征及变化趋势[J].大气科学, 2008, 32(5): 1094-1106.
[6]张杰, 张强, 田文寿, 等.祁连山区云光学特征的遥感反演与云水资源的分布特征分析[J].冰川冻土, 2006, 28(5): 722-727.
[7]彭宽军, 陈勇航, 王文彩, 等.新疆山区低层云水资源时空分布特征[J].水科学进展, 2010, 21(5): 653-659.
[8]王洪强, 陈勇航, 彭宽军, 等.基于Aqua卫星总云量资料分析山区云水资源[J].自然资源学报, 2011, 26(1): 89-96.
[9]方宗义, 许建民, 赵凤生.中国气象卫星和卫星气象研究的回顾和发展[J].气象学报, 2004, 62(5): 550-561.
[10]周毓荃, 陈英英, 李娟, 等.用 FY-2C/D卫星等综合观测资料反演云物理特性产品及检验[J].气象, 2008, 34(2): 27-37.
[11]刘健.利用卫星数据分析青藏高原云微物理特性[J].高原气象, 2013, 32(1): 38-45, doi: 10.7522/j.issn.1000-0534.2013.00005.
[12]叶培龙, 王天河, 尚可政, 等.基于卫星资料的中国西部地区云垂直结构分析[J].高原气象, 2014, 33(4): 977-987, doi: 10.7522/j.issn.1000-0534.2013.00158.
[13]蔡淼, 周毓荃, 欧建军, 等.一次对流云团合并的卫星等综合观测分析[J].大气科学学报, 2011, 34(2): 170-179.
[14]吴伟, 王式功, 邓连堂, 等.中国北方云量的四季分布与降水[J].兰州大学学报: 自然科学版, 2010, 46(3): 32-40.
[15]张琪, 李跃清, 陈权亮, 等.近46年西南地区云量的时空变化特征[J].高原气象, 2011, 30(2): 339-348.
[16]刘黎平, 仲凌志, 江源, 等.毫米波测云雷达系统及其外场试验结果初步分析[J].气象科技, 2009, 37(5): 567-572.
[17]Stephens G L, Vane D G, et al.The Cloudsat mission and the a new dimension of space-based observations of clouds and precipitation[J].Bull Amer Meteor Soc, 2002, 83: 1771-1790.
[18]Marchand R, Mace G G, Ackerman T, et al.Hydrometeor detection using Cloudsat—an Earth-orbiting 94-GHz cloud radar[J].Atmos Ocean Technol, 2008, 25(4): 519-533.
[19]周毓荃, 赵姝慧.CloudSat卫星及其在天气和云观测分析中的应用[J].南京气象学院学报, 2008, 31(5): 603-613.
[20]王胜杰, 何文英, 陈洪滨, 等.利用CloudSat 资料分析青藏高原、高原南坡及南亚季风区云高度的统计特征量[J].高原气象, 2010, 29(1): 1-9.
[21]汪会, 罗亚丽, 张人禾.用 Cloudsat/Calipso资料分析亚洲季风区和青藏高原地区云的季节变化特征[J].大气科学, 2011, 35(6): 1117-1131.
[22]杨冰韵, 张华, 彭杰, 等.用Cloudsat卫星资料分析云微物理和光学性质的分布特征[J].高原气象, 2014, 33(4): 1105-1118, doi: 10.7522/j.issn.1000-0534.2013.00026.
[23]尚博, 周毓荃, 刘建朝, 等.基于Cloudsat的降水云和非降水云垂直特征[J].应用气象学报, 2012, 23(1): 1-9.
[24]杨大生, 王普才.中国地区夏季6-8月云水含量的垂直分布特征[J].大气科学, 2012, 36(1): 89-101.
[25]杨大生, 王普才.中国地区夏季云粒子尺寸的时空分布特征[J].气候与环境研究, 2012, 17(4): 433-443.
[26]赵姝慧, 周毓荃.利用多种卫星研究台风“艾云尼”宏微观结构特征[J].高原气象, 2010, 29(5): 1254-1260.
[27]仲凌志.星载毫米波测云雷达在研究冰雪天气形成的云物理机制方面的应用潜力[J].气象学报, 2010, 68(5): 705-716.
[28]陈英英, 武文辉, 唐仁茂, 等.利用Cloudsat卫星资料分析冬雨天气的云结构[J].气象, 2011, 37(6): 707-713.
[29]钟水新, 王东海, 张人禾, 等.基于Cloudsat资料的冷涡对流云带垂直结构特征[J].应用气象学报, 2011, 22(3): 257-264.
[30]Essenwanger O, Haggard G H.Frequency of clouds in height layers for Berlin (Tempelhof)[J].J Appl Meteor, 1962, 1(4): 560-569.
[31]Poore K, Wang J, Rossow W B.Cloud layer thicknesses from a combination of surface and upper air observations[J].J Climate, 1995, 8: 550-568.
[32]周毓荃, 欧建军.利用探空数据分析云垂直结构的方法及其应用研究[J].气象, 2010, 36(11): 50-58.
[33]赵瑞霞, 吴国雄.长江流域水分收支以及再分析资料可用性分析[J].气象学报, 2007, 65(3): 416-427.
[34]欧建军.利用探空数据分析云垂直结构的方法及其应用研究[D].南京: 南京信息工程大学, 2011.
文章导航

/