论文

背景场云凝结核浓度对理想热带气旋强度的影响

  • 杨玉华 ,
  • 陈葆德 ,
  • 王斌 ,
  • 王晓峰 ,
  • 张蕾 ,
  • 王平 ,
  • 许晓林 ,
  • 黄伟
展开
  • 中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室, 北京 100029;2. 中国科学院大学, 北京 100049;3. 中国气象局上海台风研究所/中国气象局台风数值预报重点实验室, 上海 200030

收稿日期: 2014-03-29

  网络出版日期: 2015-10-28

基金资助

国家自然科学基金项目(41175094);公益性行业(气象)科研专项(GYHY201206011);上海科学委员会科研项目 (13231203300)

Numerical Study of Background Cloud Condensation Nuclei Effects on the Intensity of Idealized Tropical Cyclone

  • YANG Yuhua ,
  • CHEN Baode ,
  • WANG Bin ,
  • WANG Xiaofeng ,
  • ZHANG Lei ,
  • WANG Ping ,
  • XU Xiaolin ,
  • HUANG Wei
Expand
  • State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Shanghai Typhoon Institute of China Meteorological Administration/Key Laboratory of Tropical Cyclone Numerical Weather Prediction, China Meteorological Administration, Shanghai 200030, China

Received date: 2014-03-29

  Online published: 2015-10-28

摘要

采用中尺度模式WRF中“Aerosol-aware”Thompson云微物理方案,分别进行了干净、污染、重度污染大气情景下的3个试验,研究了背景场凝结核浓度对理想热带气旋(Tropical Cyclone,TC)强度的影响。结果表明,凝结核增加导致TC强度减弱,而最大风速半径和外围风圈半径变化不明显。不同试验眼墙降水的时空分布差异较大,但降水总量的变化较小。重度污染大气下的云滴数量远大于干净大气下,不同试验中水物质变化及其形态间转换的分布存在较大差异。正是这种差异导致了不同的潜热加热分布特征,与热力动力过程作用,对TC强度产生了不同影响。如重度污染下发展的TC外围潜热增加,减少了和TC中心的气压梯度,导致水平方向气压梯度力减弱,TC强度减弱。TC减弱和外雨带的发展也密切相关,外雨带降水过程中,形成地面冷池流入TC眼墙,可导致TC强度减弱。这表明“Aerosol-aware”Thompson方案对气溶胶影响描述较为合理。

本文引用格式

杨玉华 , 陈葆德 , 王斌 , 王晓峰 , 张蕾 , 王平 , 许晓林 , 黄伟 . 背景场云凝结核浓度对理想热带气旋强度的影响[J]. 高原气象, 2015 , 34(5) : 1379 -1390 . DOI: 10.7522/j.issn.1000-0534.2014.00095

Abstract

By making use of the Weather Research and Forecasting (WRF) model in which the newly updated Thompson microphysics scheme was implemented, three idealized numerical experiments were conducted under different atmospheric background conditions (clear air, polluted air and severe polluted air) to examine the impact of background aerosol concentration on tropical cyclone (TC) intensity.The new Thompson microphysics scheme took into account the influence of aerosol acting as CCN and IN, which is called “Aerosol-aware” scheme.The results showed that, during the stage of early development, the simulated TC intensity was the weakest, middle and strongest for server polluted, polluted and clear air conditions, respectively.While with forecasting time increasing, the differences of TC intensities among three experiment tended to be indistinctive.The increased aerosol had little influence on total precipitation amount, rather than delayed the timing of rainfall occurrence in TC area, nevertheless, a significant impact on the spatial and temporal distribution of the simulated precipitation was found.The cloud droplet number concentration in the TC developed under server polluted conditions are much higher than that under clean conditions, which, combined with dynamical and thermal process, can result in a large difference in the hydrometers and their conversion for different simulations.More latent heat release in the outside of TC under server polluted conditions led to a weaker horizontal pressure gradient, and as a result, a reduced intensity and increased size.Moreover the weakening of the TC was also related to its spiral rain band development.With development of the spiral rain band, a cold pool formed and invaded into the eye wall, resulting in a reduced intensity.The experiment results would suggest that aerosol-aware” Thompson microphysics scheme should be reasonably persuasive in the description of “indirect effect” of aerosols on precipitation process.

参考文献

[1]Andreae M O,Rosenfeld D.Aerosol-cloud-precipitation interactions.Part 1.The nature and sources of cloud-active aerosols[J].Earth-Science Reviews,2008,89(1):13-41.
[2]段婧,毛节泰.气溶胶与云相互作用的研究进展[J].地球科学进展,2008,23(3):252-261.
[3]杨慧玲,肖辉,洪延超.气溶胶对云宏微观特性和降水影响的研究进展[J].气候与环境研究,2011,16(4):525-542.
[4]李丽光,周德平.大气冰核研究进展[J].高原气象,2011,30(6):1716-1721.
[5]Twomey S.Pollution and the planetary albedo[J].Atmos Envi ron,1974,8:1251-1256.
[6]Albrecht B.Aerosols,cloud microphysics,and fractional cloudiness[J].Science,1989,245:1227-1230.
[7]Andreae M O,Rosenfeld D,Artaxo P,et al.Smoking rain clouds over the Amazon[J].Science,2004,303:1337-1342.
[8]Diehl K,Simmel M,Wurzler S.Effects of drop freezing on microphysics of an ascending cloud parcel under biomass burning conditions[J].Atmos Environ,2007,41(2):303-314.
[9]Khain A,Cohen N,Lynn B,et al.Possible aerosol effects on lightning activity and structure of hurricanes[J].J Atmos Sci,2008,65:3652-3677.
[10]Lynn B H,Alexander P K,Jimy D,et al.Spectral (Bin) microphysics coupled with a mesoscale model (MM5).Part II: Simulation of a CaPE Rain Event with a Squall Line[J].Mon Wea Rev,2005,133:59-71.
[11]岳治国,刘晓东,梁谷.气溶胶对北京地区不同类型云降水影响的数值模拟[J].高原气象,2011,30(5):1356-1367.
[12]梁晓京,陈葆德,王晓峰.背景云凝结核对台风“莫拉克”降水微物理过程影响的数值研究[J].热带气象学报,2013,29(5):833-840.
[13]杨慧玲,肖辉,洪延超.气溶胶对冰雹云物理特性影响的数值模拟研究[J].高原气象,2011,30(2):445-460.
[14]Khain A,Ovtchinnikov M,Pinsky M,et al.Notes on the state-of-the art numerical modeling of cloud microphysics[J].Atmos Res,2000,55:159-224.
[15]郭学良,黄美元,徐华英,等.层状云降水微物理过程的雨滴分档数值模拟[J].大气科学,1999,23(6):745-752.
[16]William C S,Joseph B K,Jimy D, et al.A description of the Advanced Research WRF version 3[M].NCAR Tech.Note NCAR/TN-475 + STR,2008:126.
[17]肖辉,王孝波,周非非,等.强降水云物理过程的三维数值模拟研究[J].大气科学,2004,28(3):385-404.
[18]Lou X F,Shi Y Q,Sun J,et al.Cloud-resolving model for weather modification in China[J].Chin Sci Bull,2012, 57:1055-1061.
[19]Thompson G,Roy M R,Kevin M.Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme.Part I:Description and Sensitivity Analysis[J].Mon Wea Rev,2004,132(2):519-542.
[20]Thompson G,Paul R F,Roy M R,et al.Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme.Part II: Implementation of a New Snow Parameterization[J].Mon Wea Rev,2008,136(12):5095-5115.
[21]Yi Jin,Wang Shouping,Jason N,et al.The Impact of Ice Phase Cloud Parameterizations on Tropical Cyclone Prediction[J].Mon Wea Rev,2014,142(2):606-625.
[22]Gregory T,Trude E.A study of aerosol impacts on clouds and precipitation development in a large?winter cyclone[J].J Atmos Sci,2014,71(10):3636-3658.
[23]陈联寿,丁一汇.西太平洋台风概论[M].北京: 科学出版社,1979:491.
[24]Zhang H,Mcfarquhar G M,Saleeby S M,et al.Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone[J].Geophys Res Lett,2007,34:L14812,doi:10.1029/2007GL029876.
[25]Zhang H,Cotton W R,Deng Y.Direct and indirect impacts of Saharan dust acting as cloud condensation nuclei on tropical cyclone eyewall development[J].Geophys Res Lett,2009, 36:L06802, doi:10.1029/2009GL 037276.
[26]Khain A,Lynn B,Dudhia J.Aerosol Effects on Intensity of Landfalling Hurricanes as Seen from Simulations with the WRF Model with Spectral Bin Microphysics[J].J Atmos Sci,2010, 67(2):365-384.
[27]William L W,William C,Isaac G,et al.Hurricane Aerosol and Microphysics Program(HAMP):Improving hurricane forecasts by evaluating the effects of aerosols on hurricane intensity[R].Final report under department of homeland security contract number HSHQDC-09-C-00064,2010.
[28]Reisner J,Rasmussen R M,Bruintjes R T.Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model[J].Quart J Roy Meteor Soc,1998,124(548):1071-1107.
[29]Dusek U,Frank G P,Hildebrandt L,et al.Size matters more than chemistry for cloud nucleating ability of aerosol particles[J].Science,2006,312(5778):1375-1378.
[30]Ward D S,Eidhammer T,Cotton W R,et al.The role of the particle size distribution in assessing aerosol composition effects on simulated droplet activation[J].Atmos Chem Phys, 2010,10:5435-5447.
[31]Jordan C L.Mean soundings for the West Indies area[J].J Meteorology,1958,15(1):91-97.
[32]王平,陈葆德,曾智华,等.海洋飞沫对台风“Morakot”结构影响的数值模拟研究[J].高原气象,2012,31(1):113-125.
[33]Wang Yuqing.An Explicit Simulation of Tropical Cyclones with a Triply Nested Movable Mesh Primitive Equation Model:TCM3.Part II:Model Refinements and Sensitivity to Cloud Microphysics Parameterization[J].Mon Wea Rev,2002,130(12):3022-3036.
[34]Wang Yuqing.How Do Outer Spiral Rainbands Affect Tropical Cyclone Structure and Intensity? [J].J Atmos Sci,2009,66(5):1250-1273.
文章导航

/