[1]Lupo G, Petrarca C, Tucci V, et al.EM fields associated with lightning channel: On the effect of tortuosity and branching[J].IEEE Trans Electromagn Compat, 2000, 42(4): 394-404.
[2]张义军, 言穆弘, 杜健.闪电产生氮氧化物(LNO<sub>x</sub>)区域特征计算(iv): 理论和计算方法[J].高原气象, 2002, 21(4): 348-353.
[3]郭凤霞, 言穆弘, 张义军.闪电产生氮氧化物(LNO<sub>x</sub>)及其输送过程的模式计算[J].高原气象, 2006, 25(2): 229-235.
[4]郭凤霞, 陈聪.中国地区闪电和对流层上部NO<sub>-X</sub>的时空分布特征及其相关性分析[J].大气科学, 2012, 36(4): 713-721.
[5]Shao X M, Krehbiel P R.The spatial and temporal development of intracloud lightning[J].J Geophys Res, 1996, 101(D21): 26641-26668.
[6]Mansell E R, Macgorman D R, Ziegler C L, et al.Simulated three-dimensional branched lightning in a numerical thunderstorm model[J].J Geophys Res, 2002, 107(D9): ACL2 1-12.
[7]Tan Y B, Tao S C, Zhu B Y.Fine-resolution simulation of the channel structures and propagation features of intracloud lightning[J].Geophys Res Lett, 2006, 33: L09809, doi: 10.1029/2005GL025523.
[8]谭涌波, 陶善昌, 祝宝友, 等.雷暴云内闪电双层、分支结构的数值模拟[J].中国科学(D辑), 2006, 36(5): 486-496.
[9]谭涌波, 陶善昌, 祝宝友, 等.云闪放电对云内电荷和电位分布影响的数值模拟[J].地球物理学报, 2007, 50(4): 1053-1065.
[10]周志敏, 郭学良, 崔春光, 等.强风暴个例电荷结构及云闪放电差异的数值模拟[J].高原气象, 2012, 32(3): 810-824.
[11]Coleman L M, Marshall T C, Stolzenburg M, et al.Effects of charge and electrostatic potential on lightning propagation[J].J Geophys Res, 2003, 108(D9): ACL12 1-27.
[12]Wiens K C, Rutledge S A, Tessendorf S A.The 29 June 2000 supercell observed during STEPS.Part II: Lightning and charge structure[J].J Atmos Sci, 2005, 62(12): 4151-4177.
[13]Akita M, Yoshida S, Nakamura Y, et al.Effects of charge distribution in thunderstorm on lightning propagation paths in Darwin, Australia[J].J Atmos Sci, 2011, 68(4): 719-726.
[14]郭凤霞, 刘冰, 白翎, 等.中低层水平风速对闪电和降水影响的数值模拟[J].高原气象, 2014, 33(4): 1135-1145, doi: 10.7522/j.issn.1000-0534.2013.00004.
[15]张荣, 张广庶, 王彦辉, 等.青藏高原东北部地区闪电特征初步分析[J].高原气象, 2013, 32(3): 673-681, doi: 10.7522/j.issn.1000-0534.2013.00083.
[16]Tao S C, Tan Y B, Zhu B Y, et al.Fine-resolution simulation of cloud-to-ground lightning and thundercloud charge transfer[J].Atmos Res, 2009, 91: 360-370.
[17]Williams.The tripole structure of thunderstorms[J].J Geophys Res, 1989, 94(D11): 13151-13167.
[18]Stolzenburg M, Rust W D, Marshall T C.Electrical structure in thunderstorm convective regions, 3, synthesis[J].J Geophys Res, 1998, 103(D12): 14097-14108.
[19]Vonnegut B, Moore C B, Espinola R P, et al.Electric potential gradients above thunderstorms[J].J Atmos Sci, 1966, 23: 764-770.
[20]Brown K A, Krehbiel P R, Moore C B, et al.Electrical screening layers around charged clouds[J].J Geophys Res, 1971, 76(12): 2825-2835.
[21]Klett J D.Charge screening layers around electrified clounds[J].J Geophys Res, 1972, 77(18): 3187-3195.
[22]Marshall T C, Rust W D, Winn W P, et al.Electrical structure in two thunderstorm anvil clouds[J].J Geophys Res, 1989, 94(D2): 2171-2181.
[23]Bruning E C, Rust W D, Schuur T J, et al.Electrical and polarimetric radar observations of a muticell storm in TELEX[J].Mon Wea Rev, 2007, 135(7): 2525-2544.
[24]Krehbiel P R, Riousset J A, Pasko V P, et al.Upward electrical discharges from thunderstorm[J].Nature Geoscience, 2008, 1: 233-237.
[25]Bell T F, Pasko V P, Inan U S.Runaway electrons as a source of red sprites in the mesosphere[J].Geophys Res Lett, 1995, 22(16): 2127-2130.
[26]Kasemir H W.A contribution to the electrostatic theory of a lightning discharges[J].J Geophys Res, 1960, 65: 1873-1878.
[27]Tsonis A A.A fractal study of dielectric breakdown in the atmosphere[C].Proceedings of 10<sup>th</sup> International Conf on Atmospheric Electricity, ICAE, 1996: 345-348.
[28]Sanudo J, Gomez J B, Castano F, et al.Fractal dimension of lightning discharge[J].Nonlinear Proc Geoph, 1995: 101-106.
[29]Kawasaki Z, Matsuura K.Does a lightning channel show a fractal?[J].Appl Energy, 2000, 67: 147-158.
[30]Amarasinghe D, Sonnadara U.Fractal characteristics of simulated electrical discharges[J].J Natn Sci Foundation Sri Lanka, 2008, 36(2): 137-143.
[31]Niemeyer L, Pietronero L, Wiesmann H J.Fractal dimension of dielectric breakdown[J].Phys Rev Lett, 1984, 52(12): 1033-1036.
[32]MacGorman D R, Straka J M, Ziegler C L.A lightning parameterization for numerical cloud models[J].J Appl Meteor, 2001, 40: 459-478.
[33]Marshall T C, Stolzenburg M.Estimates of cloud charge densities in thunderstorms[J].J Geophys Res, 1998, 103(D16): 19769-19775.
[34]张义军, Krehbiel P R, 刘欣生.雷暴中的反极性放电和电荷结构[J].科学通报, 2002, 47(15): 1192-1195.
[35]张廷龙, 郄秀书, 言穆弘.青藏高原雷暴的闪电特征及其成因探讨[J].高原气象, 2007, 26(4): 774-782.
[36]Qie X S, Zhang T L, Chen C P, et al.The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau[J].Geophys Res Lett, 2005, 32, L05814, doi: 10.1029/2004GL022162.
[37]Qie X S, Yu Y, Liu X S, et al.K-type breakdown process of intracloud discharge in Chinese inland plateau[J].Prog Nat Sci, 2000, 10(8): 607-611.
[38]Cui H H, Qie X S, Zhang Q L, et al.Intracloud discharge and the correlated basic charge structure of a thunderstorm Zhongchuan, a Chinese inland plateau region[J].Atmos Res, 2009, 91: 425-429.
[39]Qie X S, Zhang T L, Zhang G S, et al.Electrical characteristics of thunderstorms in different plateau regions of China[J].Atmos Res, 2009, 91: 244-249.
[40]崔海华, 郄秀书, 张其林, 等.甘肃中川地区云闪的多站同步观测及雷暴的等效电荷结构[J].高原气象, 2009, 28(4): 808-815.
[41]Nag A, Rakov V A.Some inferences on the role of lower positive charge region in facilitating different types of lightning[J].Geophys Res Lett, 2009, 36, L05815, doi: 10.1029/2008GL036783.