论文

空间电荷分布特征对云闪传播行为的影响

  • 谭涌波 ,
  • 梁忠武 ,
  • 师正 ,
  • 朱俊儒
展开
  • 南京信息工程大学气象灾害预报预警与评估协同创新中心/中国气象局气溶胶与云降水重点开放实验室, 南京 210044

收稿日期: 2013-07-09

  网络出版日期: 2015-10-28

基金资助

国家重点基础研究发展计划(2014CB441403); 国家自然科学基金项目(41175003)

Effect of Distribution Characteristic of Space Charge on Propagation Behavior of Intra-Cloud Lightning Discharge

  • TAN Yongbo ,
  • LIANG Zhongwu ,
  • SHI Zheng ,
  • ZHU Junru
Expand
  • Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China

Received date: 2013-07-09

  Online published: 2015-10-28

摘要

在已有的随机放电参数化方案的基础上, 建立了雷暴云电荷分布, 并进行二维高分辨率闪电放电的模拟试验, 定量探讨了雷暴云的空间电荷分布特征对云闪传播行为的影响, 结果表明: (1) 雷暴云顶部的屏蔽层电荷以及底部正电荷区会限制触发于雷暴云主正、负电荷区的云闪正、负先导的垂直传播范围, 使云闪通道在一定垂直范围内传播, 并最终趋向于沿水平方向传播; (2) 电荷区的电荷密度或分布范围的增大都会导致云闪通道长度增大, 但增大方式不同, 电荷密度主要是通过增加高密度中心附近的通道分枝数, 并且通道长度随电荷密度的增加呈非线性增大, 分布范围则是通过扩展通道的水平传播范围, 并且通道长度随分布范围的扩大呈线性增大; (3) 电荷区电荷密度的增大会增加云闪通道的分枝数, 尤其在高密度中心附近, 最终使云闪通道的分形维数呈增大趋势, 但基本上不会改变云闪通道的双层分枝结构, 电荷区分布范围的扩大则不影响云闪通道的分形维数。

本文引用格式

谭涌波 , 梁忠武 , 师正 , 朱俊儒 . 空间电荷分布特征对云闪传播行为的影响[J]. 高原气象, 2015 , 34(5) : 1502 -1510 . DOI: 10.7522/j.issn.1000-0534.2014.00064

Abstract

Based on the existing stochastic lightning parameterization scheme, a thundercloud charge structure was set up in the paper and two-dimensional fine-resolution lighting discharge simulations were performed to quantitatively investigate the effect of distribution characteristic of space charge in thunderstorms on propagation behavior of intra-cloud lightning discharge.The results show: (1) The screening charge layer at top of thunderstorm and the lower positive charge region will constrain the vertical propagation range of positive and negative leaders of intra-cloud lightning that are triggered between the main positive and negative charge regions.Thereby, the channels of intra-cloud lightning can only propagate in a certain vertical range and tend to propagate horizontally in the end.(2) The increase of charge density or distribution range of charge region both will increase the channel length of intra-cloud lightning, but in different way.The charge density increases the channel length mainly by increasing the channel branches near high charge density center, and they have a nonlinear relationship, while the distribution range increases it by extending the horizontal propagation range of channels, and they have a linear relationship.(3) The increase of charge density of charge region will increase the number of branches of intra-cloud lightning channel, especially near the high density center, which makes the fractal dimension of intra-cloud lightning channel show a trend of increase, while the bi-level branched channel of intra-cloud lightning will never be changed.The increase of distribution range of charge region will do not affect the fractal dimension of intra-cloud lightning channel.

参考文献

[1]Lupo G, Petrarca C, Tucci V, et al.EM fields associated with lightning channel: On the effect of tortuosity and branching[J].IEEE Trans Electromagn Compat, 2000, 42(4): 394-404.
[2]张义军, 言穆弘, 杜健.闪电产生氮氧化物(LNO<sub>x</sub>)区域特征计算(iv): 理论和计算方法[J].高原气象, 2002, 21(4): 348-353.
[3]郭凤霞, 言穆弘, 张义军.闪电产生氮氧化物(LNO<sub>x</sub>)及其输送过程的模式计算[J].高原气象, 2006, 25(2): 229-235.
[4]郭凤霞, 陈聪.中国地区闪电和对流层上部NO<sub>-X</sub>的时空分布特征及其相关性分析[J].大气科学, 2012, 36(4): 713-721.
[5]Shao X M, Krehbiel P R.The spatial and temporal development of intracloud lightning[J].J Geophys Res, 1996, 101(D21): 26641-26668.
[6]Mansell E R, Macgorman D R, Ziegler C L, et al.Simulated three-dimensional branched lightning in a numerical thunderstorm model[J].J Geophys Res, 2002, 107(D9): ACL2 1-12.
[7]Tan Y B, Tao S C, Zhu B Y.Fine-resolution simulation of the channel structures and propagation features of intracloud lightning[J].Geophys Res Lett, 2006, 33: L09809, doi: 10.1029/2005GL025523.
[8]谭涌波, 陶善昌, 祝宝友, 等.雷暴云内闪电双层、分支结构的数值模拟[J].中国科学(D辑), 2006, 36(5): 486-496.
[9]谭涌波, 陶善昌, 祝宝友, 等.云闪放电对云内电荷和电位分布影响的数值模拟[J].地球物理学报, 2007, 50(4): 1053-1065.
[10]周志敏, 郭学良, 崔春光, 等.强风暴个例电荷结构及云闪放电差异的数值模拟[J].高原气象, 2012, 32(3): 810-824.
[11]Coleman L M, Marshall T C, Stolzenburg M, et al.Effects of charge and electrostatic potential on lightning propagation[J].J Geophys Res, 2003, 108(D9): ACL12 1-27.
[12]Wiens K C, Rutledge S A, Tessendorf S A.The 29 June 2000 supercell observed during STEPS.Part II: Lightning and charge structure[J].J Atmos Sci, 2005, 62(12): 4151-4177.
[13]Akita M, Yoshida S, Nakamura Y, et al.Effects of charge distribution in thunderstorm on lightning propagation paths in Darwin, Australia[J].J Atmos Sci, 2011, 68(4): 719-726.
[14]郭凤霞, 刘冰, 白翎, 等.中低层水平风速对闪电和降水影响的数值模拟[J].高原气象, 2014, 33(4): 1135-1145, doi: 10.7522/j.issn.1000-0534.2013.00004.
[15]张荣, 张广庶, 王彦辉, 等.青藏高原东北部地区闪电特征初步分析[J].高原气象, 2013, 32(3): 673-681, doi: 10.7522/j.issn.1000-0534.2013.00083.
[16]Tao S C, Tan Y B, Zhu B Y, et al.Fine-resolution simulation of cloud-to-ground lightning and thundercloud charge transfer[J].Atmos Res, 2009, 91: 360-370.
[17]Williams.The tripole structure of thunderstorms[J].J Geophys Res, 1989, 94(D11): 13151-13167.
[18]Stolzenburg M, Rust W D, Marshall T C.Electrical structure in thunderstorm convective regions, 3, synthesis[J].J Geophys Res, 1998, 103(D12): 14097-14108.
[19]Vonnegut B, Moore C B, Espinola R P, et al.Electric potential gradients above thunderstorms[J].J Atmos Sci, 1966, 23: 764-770.
[20]Brown K A, Krehbiel P R, Moore C B, et al.Electrical screening layers around charged clouds[J].J Geophys Res, 1971, 76(12): 2825-2835.
[21]Klett J D.Charge screening layers around electrified clounds[J].J Geophys Res, 1972, 77(18): 3187-3195.
[22]Marshall T C, Rust W D, Winn W P, et al.Electrical structure in two thunderstorm anvil clouds[J].J Geophys Res, 1989, 94(D2): 2171-2181.
[23]Bruning E C, Rust W D, Schuur T J, et al.Electrical and polarimetric radar observations of a muticell storm in TELEX[J].Mon Wea Rev, 2007, 135(7): 2525-2544.
[24]Krehbiel P R, Riousset J A, Pasko V P, et al.Upward electrical discharges from thunderstorm[J].Nature Geoscience, 2008, 1: 233-237.
[25]Bell T F, Pasko V P, Inan U S.Runaway electrons as a source of red sprites in the mesosphere[J].Geophys Res Lett, 1995, 22(16): 2127-2130.
[26]Kasemir H W.A contribution to the electrostatic theory of a lightning discharges[J].J Geophys Res, 1960, 65: 1873-1878.
[27]Tsonis A A.A fractal study of dielectric breakdown in the atmosphere[C].Proceedings of 10<sup>th</sup> International Conf on Atmospheric Electricity, ICAE, 1996: 345-348.
[28]Sanudo J, Gomez J B, Castano F, et al.Fractal dimension of lightning discharge[J].Nonlinear Proc Geoph, 1995: 101-106.
[29]Kawasaki Z, Matsuura K.Does a lightning channel show a fractal?[J].Appl Energy, 2000, 67: 147-158.
[30]Amarasinghe D, Sonnadara U.Fractal characteristics of simulated electrical discharges[J].J Natn Sci Foundation Sri Lanka, 2008, 36(2): 137-143.
[31]Niemeyer L, Pietronero L, Wiesmann H J.Fractal dimension of dielectric breakdown[J].Phys Rev Lett, 1984, 52(12): 1033-1036.
[32]MacGorman D R, Straka J M, Ziegler C L.A lightning parameterization for numerical cloud models[J].J Appl Meteor, 2001, 40: 459-478.
[33]Marshall T C, Stolzenburg M.Estimates of cloud charge densities in thunderstorms[J].J Geophys Res, 1998, 103(D16): 19769-19775.
[34]张义军, Krehbiel P R, 刘欣生.雷暴中的反极性放电和电荷结构[J].科学通报, 2002, 47(15): 1192-1195.
[35]张廷龙, 郄秀书, 言穆弘.青藏高原雷暴的闪电特征及其成因探讨[J].高原气象, 2007, 26(4): 774-782.
[36]Qie X S, Zhang T L, Chen C P, et al.The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau[J].Geophys Res Lett, 2005, 32, L05814, doi: 10.1029/2004GL022162.
[37]Qie X S, Yu Y, Liu X S, et al.K-type breakdown process of intracloud discharge in Chinese inland plateau[J].Prog Nat Sci, 2000, 10(8): 607-611.
[38]Cui H H, Qie X S, Zhang Q L, et al.Intracloud discharge and the correlated basic charge structure of a thunderstorm Zhongchuan, a Chinese inland plateau region[J].Atmos Res, 2009, 91: 425-429.
[39]Qie X S, Zhang T L, Zhang G S, et al.Electrical characteristics of thunderstorms in different plateau regions of China[J].Atmos Res, 2009, 91: 244-249.
[40]崔海华, 郄秀书, 张其林, 等.甘肃中川地区云闪的多站同步观测及雷暴的等效电荷结构[J].高原气象, 2009, 28(4): 808-815.
[41]Nag A, Rakov V A.Some inferences on the role of lower positive charge region in facilitating different types of lightning[J].Geophys Res Lett, 2009, 36, L05815, doi: 10.1029/2008GL036783.
文章导航

/