论文

1961 -2018年华南年和各季极端降水变化特征的比较分析

  • 韦志刚 ,
  • 李娴茹 ,
  • 刘雨佳 ,
  • 王欢
展开
  • 北京师范大学 地理科学学部,地表过程与资源生态国家重点实验室,北京 100875;南方海洋科学与工程广东省实验室(广州),广东 广州 511458

收稿日期: 2020-11-04

  修回日期: 2020-12-17

  网络出版日期: 2021-12-28

基金资助

国家重点研发计划项目 (2017YFC1502301); 南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0601); 国家自然科学基金项目(41875089)

Comparative Analysis of the Characteristics of Annual and Seasonal Extreme Precipitation in South China during 1961 -2018

  • WEI Zhigang ,
  • LI Xianru ,
  • LIU Yujia ,
  • WANG Huan
Expand
  • State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China;Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China

Received date: 2020-11-04

  Revised date: 2020-12-17

  Online published: 2021-12-28

摘要

利用中国气象局0.25°×0.25°的CN05.1逐日气温(TM)和降水(PRE)资料, 分析比较了华南地区9种年和各季极端降水的变化特征及其气候背景, 按照空间分布和变化趋势, 将9种华南地区极端降水归为4类: 第1类为极端湿日降水量(R99P)、 非常湿日降水量(R95P)、 最大日降水量(RX1day)和最大5日降水量(RX5day), 第2类为强降水日数(R10day)、 特强降水日数(R20day)和湿日降水均值(SDII), 第3类和第4类分别为最大连续湿日(CWDday)和最大连续干日(CDDday)。在1961 -2018年, 华南区域平均的第1类和第2类极端降水除春季外都呈增加趋势, R99P、 R95P、 R10day和R20day在夏季较显著增加, RX1day和RX5day在冬季较显著增加, SDII在冬季和夏季较显著增加; CWDday在春季较显著增加; 但是, 年和各季的CDDday都呈下降趋势, CDDday在冬季较显著下降; 除了CWDday外, 春季各极端降水没有显著的变化趋势。以R95P、 R20day、 CWDday和CDDday为例, 通过EOF分解进一步比较分析了年和各季值的时空变化和总体趋势, 结果表明, 华南地区极端降水主要是全区一致的变化, 其次为南北反相或东西反相的变化; 南北大致以23°N(华南西部) -25°N(华南东部)为界, 反映沿海地区和北部山区的反相变化; 东西大致以114°E为界。冬季的一致变化最强, 其主分量所占方差比例最大。

本文引用格式

韦志刚 , 李娴茹 , 刘雨佳 , 王欢 . 1961 -2018年华南年和各季极端降水变化特征的比较分析[J]. 高原气象, 2021 , 40(6) : 1513 -1530 . DOI: 10.7522/j.issn.1000-0534.2021.zk001

Abstract

Using a 0.25°×0.25° gridded daily temperature and daily precipitation observation data set CN05.1, we investigated characteristics of annual and seasonal extreme precipitation in South China.Based on spatial distribution and trends, the nine kinds of extreme precipitation in South China are classified into four categories: the category 1 is the extremely wet days (R99P), the very wet days (R95P), the maximum 1-day precipitation amount (RX1day) and the maximum 5-day precipitation amount (RX5day).The category 2 is the number of heavy precipitation days (R10day), the number of very heavy precipitation days (R20day) and the simple daily intensity index (SDII).The category 3 and 4 is the consecutive wet days (CWDday) and the consecutive dry days (CDDday), respectively.For 1961 -2018, the regional average extreme precipitation of the category 1 and 2 in South China increased except in spring.R99P, R95P, R10day and R20day increased significantly in summer.RX1day and RX5day increased significantly in winter and SDII in winter and summer.The CWDday increased significantly in spring, however, the annual and seasonal CDDday showed a downward trend, CDDday decreased significantly in winter.Except for CWDday, there is no significant trend of extreme precipitation in spring.Taking R95P, R20day, CWDday and CDDday as examples, the temporal and spatial changes and general trends of annual and seasonal extreme precipitation were further compared and analyzed by EOF decomposition.The results show that the extreme precipitation in South China is mainly the consistent variation in the whole region, the second is the variation of the north-south reverse phase or the east-west reverse phase.The north and south are roughly bounded by 23°N (Western South China) -25°N( Eastern South China), reflecting the reverse phase changes in coastal areas and northern mountainous areas in South China.East and west are roughly bounded by 114°E.The consistent variation in winter is the strongest, and the main component accounts for the largest proportion of variance.In addition, the spatial distribution characteristics of the trends of these four kinds of annual and seasonal extreme precipitation are analyzed and compared in detail.

参考文献

[1]AlexanderL V, 2016.Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond[J].Weather and Climate Extremes, 11: 4-16.DOI: 10.1016/j.wace.2015.10.007.
[2]CuiD Y, WangC H, SantisirisomboonJ, 2019.Characteristics of extreme precipitation over eastern Asia and its possible connections with Asian summer monsoon activity[J].International Journal of Climatology, 39: 711-723.DOI: 10.1002/joc.5837.
[3]DonatM G, AlexanderL V, HeroldN, alet, 2016.Temperature and precipitation extremes in century-long gridded observations, reanalyses, and atmospheric model simulations[J].Journal of Geophysical Research: Atmospheres, 121(11): 11174-11189.DOI: 10.1002/2016JD025480.
[4]HuangG, WenG H, 2013.Spatial and temporal variations of light rain events over China and the mid-high latitudes of the Northern Hemisphere[J].Chinese Science Bulletin, 58: 1402-1411.DOI: 10.1007/s11434-012-5593-1.
[5]LiH X, ChenH P, WangH J, 2016.Changes in clustered extreme precipitation events in South China and associated atmospheric circulations[J].International Journal of Climatology, 36: 3226-3236.DOI: 10.1002/joc.4549.
[6]LiuM X, XuX L, SunA, alet, 2014.Is southwestern China experiencing more frequent precipitation extremes?[J], Environmental Research Letters, 9: 064002.DOI: 10.1088/1748-9326/9/6/064002.
[7]LiuM X, XuX L, SunA, 2015a.Decreasing spatial variability in precipitation extremes in southwestern China and the local/large-scale influencing factors[J], Journal of Geophysical Research Atmospheres, 120: 6480-6488. DOI: 10.1002/2014JD022886.
[8]LiuR, LiuS C, CiceroneR J, alet, 2015b.Trends of extreme precipitation in eastern China and their possible causes[J].Advances in Atmospheric Sciences, 32(8): 1027-1037.DOI: 10.1007/s00376-015-5002-1.
[9]PapalexiouS M, MontanariA, 2019.Global and regional increase of precipitation extremes under global warming[J].Water Resources Research, 55: 4901-4914.DOI: 10.1029/2018WR024067.
[10]SunJ, ZhangF Q, 2017.Daily extreme precipitation and trends over China.[J], Science China (Earth Sciences), 60: 2190-2203, DOI: 10.1007/s11430-016-9117-8.
[11]SunW Y, MuX M, SongX Y, alet, 2016.Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960 -2013 under global warming [J].Atmospheric Research, 168: 33-84.DOI: 10.1016/j.atmosres.2015.09.001.
[12]SongX Y, SongS B, SunW Y, alet, 2015.Recent changes in extreme precipitation and drought over the Songhua River Basin, China, during 1960 -2013[J].Atmospheric Research, 157: 137-152.DOI: 10.1016/j.atmosres.2015.01.022.
[13]StockerT F, QinD, PlattnerG K, alet, 2013.Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[J].Computational Geometry, 18(2): 95-123.
[14]WangC H, CuiD Y, SantisirisomboonJ, 2020.Projected changes in extreme precipitation over Eastern Asia in the 21st century[J].International Journal of Climatology, 40: 3701-3713.DOI: 10. 1002/joc.6422.
[15]WangY J, ZhouB T, QinD H, alet, 2017.Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection[J].Advances in Atmospheric Sciences, 34(3): 289-305.DOI: 10.1007/s00376-016-6160-5.
[16]ZhangW X, ZhouT J, 2019.Significant Increases in Extreme Precipitation and the Associations with Global Warming over the Global Land Monsoon Regions[J].Journal of Climate, 32: 8465-8488.DOI: 10.1175/JCLI-D-18-0662.1.
[17]ZhangX B, AlexanderL, HegerlG C, alet, 2011.Indices for monitoring changes in extremes based on daily temperature and precipitation data[J].WIREs Climate Change, 2: 851-870.
[18]ZhaoY F, ZouX Q, CaoL G, alet, 2014.Changes in precipitation extremes over the Pearl River Basin, southern China, during 1960-2012[J].Quaternary International, 333: 26-39.DOI: 10. 1016/j.quaint.2014.03.060.
[19]蔡悦幸, 陆希, 杨崧, 2018.华南地区前后汛期极端降水事件对比分析[J].中山大学学报(自然科学版), 57(1): 83-92.
[20]陈金明, 陆桂华, 吴志勇, 等, 2016.1960-2009年中国夏季极端降水事件与气温的变化及其环流特征[J].高原气象, 35(3): 675-685.DOI: 10.7522/j.issn.1000-0534.2015.00072.
[21]李娟, 闫会平, 朱志伟, 2020.中国夏季极端气温与降水事件日数随平均气温变化的定量分析[J].高原气象, 39(3): 532-542.DOI: 10.7522/j.issn.1000-0534.2019.00042.
[22]李丽平, 章开美, 王超, 等, 2010.近40 年华南前汛期极端降水时空演变特征[J].气候与环境研究, 15 (4): 443-450.
[23]李丽平, 许冠宇, 成丽萍, 等, 2012.华南后汛期极端降水特征及变化趋势[J].大气科学学报, 35( 5): 570-577.
[24]龙妍妍, 范广洲, 段炼, 等, 2016.中国近54 年来夏季极端降水事件特征研究[J].气候与环境研究, 21 (4): 429-438.
[25]陆虹, 陈思蓉, 郭媛, 等, 2012.近50 年华南地区极端强降水频次的时空变化特征[J].热带气象学报, 28(2): 219-227.
[26]卢珊, 胡泽勇, 王百朋, 等, 2020.近56 年中国极端降水事件的时空变化格局[J].高原气象, 39(4): 683-693.DOI: 10.7522/j.issn.1000-0534.2019.00058.
[27]马佳宁, 高艳红, 2019.近50年黄河上游流域年均降水与极端降水变化分析[J].高原气象, 38(1): 124-135.DOI: 10.7522/j.issn.1000-0534.2018.00126.
[28]任国玉, 封国林, 严中伟, 2010.中国极端气候变化观测研究回顾与展望[ J].气候与环境研究, 15(4): 337-353.
[29]任正果, 张明军, 王圣杰, 等, 2014.1961-2011年中国南方地区极端降水事件变化[J].地理学报, 69(5): 640-649.
[30]吴佳, 高学杰, 2013.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报, 56(4): 1102-1111.
[31]杨志刚, 建军, 洪建昌, 2014.1961-2010 年西藏极端降水事件时空分布特征[J].高原气象, 33(1): 37-42.DOI: 10.7522/j.issn.1000-0534.2013.00147.
[32]曾颖婷, 陆尔, 2015.1961-2010年我国夏季总降水和极端降水的变化 [J].气候变化研究进展, 11 (2): 79-85.
文章导航

/