在青藏高原上空对流层频繁出现的暖中心活动与高原加热作用密切相关, 是东亚独特的天气气候现象。本文利用1979 -2018年ERA-interim分辨率为6 h的再分析资料, 基于暖中心事件的统计及其与降水场的奇异值分解(SVD), 探讨了春季青藏高原低层暖中心强度变动对中亚-高原偶极型降水异常分布的调制作用。从年际变化来看, 3 -4月高原低层暖中心偏强(弱)时通常对应同期帕米尔高原至伊朗高原东北部降水偏多(少)而高原东部至印度北部降水偏少(多)的偶极型降水异常分布。通过高原暖中心与温度、 环流和水汽场对应关系的诊断分析发现, 偏强的低层暖中心显著改变高原周围的经向和纬向温度梯度, 并引发高原中高层正压反气旋式环流异常, 其内部的下沉运动抑制了对流发展, 反气旋东侧和南侧异常的偏北风和偏东风不利于水汽输送, 从而造成高原东部至印度北部降水减少; 而反气旋西北侧异常西南气流携带水汽进入中亚, 给帕米尔至伊朗高原东北部带来更多降水。当高原低层暖中心偏弱时会引发中高层气旋式环流异常并导致相反的降水异常分布。
The frequent occurrence of tropospheric warm cores over the Qinghai-Xizang Plateau (QXP) is an unique climate phenomenon in East Asia and is closely associated with the QXP heating effect.By using the six-hourly ERA-interim reanalysis data from 1979 to 2018, the modulation effect of the springtime intensity of the low-level warm core (LLWC) on the dipole pattern of precipitation in Central Asia-Tibetan Plateau (CA-TP) is investigated on the basis of the warm core event statistics and singular variance decomposition (SVD).At the interannual time scale, significantly enhanced (reduced) rainfall in Central Asia (from Pamirs Plateau to northeastern Iranian Plateau) and suppressed (enhanced) rainfall over the eastern QXP and northern India are observed in strong (weak) LLWC years.The linkages between the LLWC and the associated lower-tropospheric temperature variation, the atmospheric circulation and the corresponding water vapor transport are revealed through diagnostic analyses.The results indicate that the anomalously strong LLWC significantly changes the meridional and zonal temperature gradients, which further trigger the barotropic anticyclonic circulation anomalies at the middle and upper tropospheric levels over the QXP.Strong sinking flows overwhelm the interior of the anticyclone and suppress the convective precipitation development.In addition, the anomalous northerly and easterly winds on the eastern and southern sides of the anticyclone restrain the water vapor transport.These conditions favor the decreased rainfall over the eastern QXP and northern India.Meanwhile, powerful southwesterly flow, prevailing in the northwestern side of the anticyclone, carries abundant moisture and converges in Central Asia, consequently leading to surplus rainfall from Pamir Plateau to northeastern Iranian Plateau.The anomalously weak LLWC triggers the cyclonic circulation anomaly at the middle and upper tropospheric levels and results in the opposite precipitation anomaly pattern.
[1]BaoX H, ZhangF Q, 2013.Evaluation of NCEP CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau[J].Journal of Climate, 26: 206-214.DOI: 10.1175/JCLI-D-12-00056.1.
[2]BoosW R, KuangZ M, 2010.Dominant control of the south Asian monsoon by orographic insulation versus plateau heating[J].Nature, 463(7278): 218-222.DOI: 10.1038/nature08707.
[3]CannonF, CarvalhoL, JonesC, alet, 2016.Winter westerly disturbance dynamics and precipitation in the western Himalaya and Karakoram: a wave-tracking approach[J].Theoretical and Applied Climatology, 125: 27-44.DOI: 10.1007/s00704-015-1489-8.
[4]ChenF H, HuangW, JinL Y, alet, 2011.Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming[J].Science China: Earth Sciences, 54(12): 1812-1821.DOI: 10.1007/s11430-011-4333-8.
[5]ChenM, ShiW, XieP P, alet, 2008.Assessing objective techniques for gauge-based analyses of global daily precipitation[J].Journal of Geophysical Research.113, D04110.DOI: 10.1029/2007 JD009132.
[6]de KokR J, ImmerzeelW W, 2019.The Western Tibetan vortex as an emergent feature of near‐surface temperature variations[J].Geophysical Research Letters, 46(23): 14145-14152.DOI: 10. 1029/2019GL085757.
[7]DeeD P, UppalaS M, SimmonsA J, alet, 2011.The ERA-interim reanalysis: Configuration and performance of the data assimilation system[J].Quarterly Journal of the Royal Meteorological Society, 137(656): 553-597.DOI: 10.1002/qj.828.
[8]FilippiL, PalazziE, von HardenbergJ, alet, 2014.Multidecadal variations in the relationship between the NAO and winter precipitation in the HinduKush-Karakoram[J].Journal of Climate, 27: 7890-7902.DOI: 10.1175/JCLI-D-14-00286.1.
[9]HahnD G, ManabeS, 1975.The role of mountains in the South Asian Monsoon circulation[J].Journal of the Atmospheric Sciences, 32(8): 1515-1541.
[10]HeH Y, McginnisJ W, SongZ S, alet, 1987.Onset of the Asian Summer Monsoon in 1979 and the effect of the Tibetan Plateau[J].Monthly Weather Review, 115(9): 1966-1995.
[11]HoellA, ShuklaS, BarlowM, alet, 2015.The forcing of monthly precipitation variability over Southwest Asia during the boreal cold season[J].Journal of Climate, 28: 7038-7056.DOI: 10. 1175/JCLI-D-14-00757.1.
[12]KawamuraR, FukutaY, UedaH, alet, 2002.A mechanism of the onset of the Australian summer monsoon[J].Journal of Geophysical Research, 107(D14).DOI: 10.1029/2001JD001070.
[13]LiuH, LiuX D, DongB W, 2017.Intraseasonal variability of winter precipitation over central Asia and the western Tibetan Plateau from 1979 to 2013 and its relationship with the North Atlantic Oscillation[J].Dynamics of Atmospheres and Oceans, 79: 31-42.DOI: 10.1016/j.dynatmoce.2017.07.001.
[14]MariottiA, 2007.How ENSO impacts precipitation in southwest Central Asia[J].Geophysical Research Letters, 34, L16706.DOI: 10.1029/2007GL030078.
[15]MolnarP, EmanuelK A, 1999.Temperature profiles in radiative-convective equilibrium above surfaces at different heights[J].Journal of Geophysical Research, 104(D20): 24265.DOI: 10.1029/1999JD900485.
[16]SchiemannR, LüthiD, VidaleP L, alet, 2008.The precipitation climate of Central Asia—intercomparison of observational and numerical data sources in a remote semiarid region[J].International Journal of Climatology, 28: 295-314.DOI: 10.1002/joc.1532.
[17]ShangK, LiuX D, DongB W, 2021.Climatology and physical mechanisms of the tropospheric warm cores over the Tibetan Plateau and its vicinity[J].Climate Dynamics, 57: 953-974.DOI: 10.1007/s00382-021-05749-1.
[18]SunH, LiuX D, 2021.Impacts of dynamic and thermal forcing by the Tibetan Plateau on the precipitation distribution in the Asian arid and monsoon regions[J].Climate Dynamics, 56: 2339-2358.DOI: 10.1007/S00382-020-05593-9.
[19]SyedF S, GiorgiF, PalJ S, alet, 2006.Effect of remote forcings on the winter precipitation of central southwest Asia part 1: observations[J].Theoretical and Applied Climatology, 86: 147-160.DOI: 10.1007/s00704-005-0217-1.
[20]TamuraT, TaniguchiK, KoikeT, 2010.Mechanism of upper tropospheric warming around the Tibetan Plateau at the onset phase of the Asian summer monsoon[J].Journal of Geophysical Research, 115: D02106.DOI: 10.1029/2008jd011678.
[21]UedaH, KamahoriH, YamazakiN, 2003.Seasonal contrasting features of heat and moisture budgets between the eastern and western Tibetan Plateau during the GAME IOP[J].Journal of Climate, 16(14): 2309-2324.
[22]WangA H, ZengX B, 2012.Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 117: D05102.DOI: 10. 1029/2011JD016553.
[23]WuG X, LiuY M, HeB, alet, 2012.Thermal controls on the Asian summer monsoon[J].Scientific Reports, 2: 404.DOI: 10.1038/srep00404.
[24]WuG X, HeB, LiuY, alet, 2015.Location and variation of the summertime upper-troposphere temperature maximum over South Asia[J].Climate Dynamics, 45: 2757-2774.DOI: 10.1007/s00382-015-2506-4.
[25]YanaiM, LiC F, SongZ S, 1992.Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon[J].Journal of the Meteorological Society of Japan, 70(1B): 319-351.
[26]YinZ Y, WangH L, LiuX D, 2014.A Comparative study on precipitation climatology and interannual variability in the lower midlatitude East Asia and Central Asia[J].Journal of Climate, 27(20): 7830-7848.DOI: 10.1175/JCLI-D-14-00052.1.
[27]ZhaoP, ZhuY N, ZhangR H, 2007.An Asian-pacific teleconnection in summer tropospheric temperature and associated Asian climate variability[J].Climate Dynamics, 29(2-3): 293-303.DOI: 10.1007/s00382-007-0236-y.
[28]贲海荣, 周顺武, 乔钰, 等, 2017.一个新的青藏高原热力指数的构建及其应用[J].高原气象, 36(6): 1487-1498.DOI: 10.7522 /j.issn.1000-0534.2017.00009.
[29]程慧萍, 贾晓静, 2014.印度洋冬季海温异常对中国春季降水的影响[J].高原气象, 33(3): 733-742.DOI: 10.7522 /j.issn. 1000-0534.2013.00024.
[30]丁裕国, 江志红, 1996.SVD方法在气象场诊断分析中的普适性[J].气象学报, 54(3): 365-372.
[31]段安民, 刘屹岷, 吴国雄, 2003.4~6月青藏高原热状况与盛夏东亚降水和大气环流的异常[J].中国科学(地球科学), 33(10): 997-1004.
[32]赫小红, 宋敏红, 周梓萱, 2020.夏季青藏高原空中云水资源的时空特征分析[J].高原气象, 39(6): 1339-1347.DOI: 10.7522/j.issn.1000-0534.2019.00135.
[33]胡增运, 倪勇勇, 邵华, 等, 2013.CFSR、 ERA-Interim和MERRA降水资料在中亚地区的适用性[J].干旱区地理, 36(4): 700-708.
[34]刘晓东, 罗四维, 钱永甫, 1989.青藏高原地表热状况对夏季东亚大气环流影响的数值模拟[J].高原气象, 8(3): 205-216.
[35]任余龙, 王劲松, 石彦军, 等, 2013.NCAR CAM3全球气候模式对亚洲中部干旱区气候变化的模拟检验[J].干旱气象, 31(2): 231-238.DOI: 10.11755/j.issn.1006-7639(2013)-02-0231.
[36]王蕊, 王慧, 李栋梁, 2019.中国西北地区东部盛夏降水特征及对初春地表感热异常的响应[J].高原气象, 38(6): 1241-1250.DOI: 10.7522/j.issn.1000-0534.2018.00153.
[37]王天竺, 赵勇, 2021.青藏高原和热带印度洋5月热力异常与新疆夏季降水的关系[J].高原气象, 40(1): 1-14.DOI: 10.7522/j.issn.1000-0534.2020.00003.
[38]王同美, 吴国雄, 万日金, 2008.青藏高原的热力和动力作用对亚洲季风区环流的影响[J].高原气象, 27(1): 1-9.
[39]魏莹, 段克勤, 2020.1980-2016 年青藏高原变暖时空特征及其可能影响原因[J].高原气象, 39(3): 459-466.DOI: 10.7522/j.issn.1000-0534.2019.00121.
[40]吴国雄, 刘屹敏, 刘新, 等, 2005.青藏高原加热如何影响亚洲夏季的气候格局[J].大气科学, 29(1): 47-56.
[41]许建伟, 高艳红, 彭保发,等, 2020.1979-2016 年青藏高原降水的变化特征及成因分析[J].高原气象, 39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029.
[42]叶笃正, 高由禧, 1979.青藏高原气象学[M].北京: 科学出版社.
[43]叶笃正, 罗四维, 朱抱真, 1957.西藏高原及其附近的流场结构和对流层大气的热量平衡.气象学报, 28(2): 108-121.
[44]赵勇, 李如琦, 杨霞, 等, 2013.5月青藏高原地区感热异常对北疆夏季降水的影响[J].高原气象, 32(5): 1215-1223.DOI: 10.7522/j.issn.1000-0534.2012.00117.
[45]周俊前, 刘新, 李伟平, 等, 2016.青藏高原春季地表感热异常对西北地区东部降水变化的影响[J].高原气象, 35(4): 845-853.DOI: 10.7522/j.issn.1000-0534.2015.00053.