论文

青藏高原与黄土高原过渡区雷暴活动特征及东亚夏季风的影响

  • 李江林 ,
  • 余晔 ,
  • 刘川
展开
  • 中国科学院寒区旱区环境与工程研究所 寒旱区陆面过程与气候变化重点实验室, 兰州 730000;2. 中国科学院平凉陆面过程与灾害天气观测研究站, 平凉 744015;3. 中国科学院大学, 北京 100049

收稿日期: 2014-05-15

  网络出版日期: 2015-12-28

基金资助

国家重点基础研究发展计划(2014CB441404);国家自然科学基金项目(41175009)

Variation of Thunderstorm Activities and Its Connection to East Asian Summer Monsoon in Transition Region Between Qinghai-Xizang Plateau and Loess Plateau

  • LI Jianglin ,
  • YU Ye ,
  • LIU Chuan
Expand
  • Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Science, Lanzhou 730000, China;2. Pingliang Land Surface Process & Severe Weather Research Station, Chinese Academy of Sciences, Pingliang 744015, China;3. University of Chinese Academy of Science, Beijing 100049, China

Received date: 2014-05-15

  Online published: 2015-12-28

摘要

利用1951-2012年青藏高原与黄土高原过渡区(下称研究区)54个站点雷暴日数观测资料,分季节统计了研究区雷暴发生日数的年际和季节变化特征及其对东亚季风的响应。结果表明,研究区夏季雷暴日数最多,春季次之,秋季较少,冬季几乎无雷暴发生。青藏高原东部的甘南地区年平均雷暴日数最多,其次为祁连山东部的永登和乌鞘岭地区,靠近黄土高原地区的年平均雷暴日数相对较少,研究区雷暴日数总体呈下降趋势。夏季(6-8月)雷暴日数多年对应强夏季风年,雷暴日数少年对应弱夏季风年。东亚夏季风强年,研究区水汽通量明显偏大,西太平洋副热带高压西伸脊点位置偏东,新疆东侧和内蒙古西北侧500 hPa高度场偏低,蒙古热低压处于发展阶段,这些特点都有利于强对流天气的产生;东亚夏季风弱年,情况则相反。小波分析结果表明夏季雷暴日数与东亚夏季风都存在准30年的振荡周期。

本文引用格式

李江林 , 余晔 , 刘川 . 青藏高原与黄土高原过渡区雷暴活动特征及东亚夏季风的影响[J]. 高原气象, 2015 , 34(6) : 1575 -1583 . DOI: 10.7522/j.issn.1000-0534.2015.00001

Abstract

Thunderstorm days data collected from 54 stations over the transition region between the Qinghai-Xizang Plateau and the Loess Plateau from 1951 to 2012 were used to study the variation of thunderstorm activities and its connection to the East Asian Summer Monsoon (EASM). The results show that thunderstorm is the most active in summer, followed by spring and autumn. While almost no thunderstorm occurs in winter. There are two centers with high number of thunderstorm days, one of which is located in the Gannan area close to the Qinghai-Xizang Plateau and the other is in the Yongdeng and Wushaoling area. The Loess Plateau has much less number of thunderstorm days. The number of thunderstorm days decreased during the study period and years with strong EASM corresponded to years with high number of summer thunderstorm days, while years with weak EASM corresponded to years of medium and low number of summer thunderstorm days. Years with strong EASM are characterized by relatively high water vapor flux to the study region, eastward position of the western ridge of Western Pacific subtropical high,low geopotential height on 500 hPa in the east of Xinjiang and the northwest of Inner Mongolia, and developed Mongolia thermal low. These characterized are conducive to the generation of severe convective weather. Wavelet analysis indicates a quasi-thirty year period for both the number of thunderstorm days in summertime and the EASM.

参考文献

[1]顾震潮. 我国雷暴的气候特点[J]. 地理学报,1978,33(1):42-48.
[2]张敏锋,冯霞. 我国雷暴天气的气候特征[J]. 热带气象学报,1998,14(2):61-67.
[3]Changnon S A. Climatography of thunder events in the conterminous United States. Part I:Temporal aspects[J]. J Climate,1988,1(4):389-398.
[4]Changnon S A. Climatography of thunder events in the conterminous United States. Part Ⅱ:Spatial aspects[J]. J Climate,1988,1(4):399-405.
[5]Hidayat S,Ishii M,Spatial and temporal distribution of lightning activity around Java[J]. J Geophys Res,1998,103(D12):14001-14009.
[6]Solantie R,Tuomi T. On the areal and temporal distribution of thunder in Finland[J]. Geophysica,2000,36(1-2):49-68.
[7]Pinto O,Pinto I,Ferro M A S. A study of the long-term variability of thunderstorm days in southeast Brazil[J]. J Geophys Res:Atmospheres,2013,118(11):5231-5246.
[8]林建,曲晓波. 中国雷电事件的时空分布特征[J]. 气象,2008,34(11):22-30.
[9]陈思蓉,朱伟军,周兵. 中国雷暴气候分布特征及变化趋势[J]. 大气科学学报,2009,32(5):703-710.
[10]巩崇水,曾淑玲,王嘉媛,等. 近30年中国雷暴天气气候特征分析[J]. 高原气象,2013,32(5):1442-1449,doi:10. 7522/j. issn. 1000-0534. 2012. 00134.
[11]徐桂玉,杨修群. 我国南方雷暴的气候特征研究[J]. 气象科学,2001,21(3):299-307.
[12]尹丽云,许迎杰,张腾飞,等. 云南雷暴的时空分布特征分析[J]. 灾害学,2007,22(2):87-92.
[13]郭冬艳,辛吉武,吴胜安,等. 海南雷暴气候特征及大气环流背景分析[J]. 气象科技,2008,36(4):404-409.
[14]蔡新玲,刘宇,康岚,等. 陕西省雷暴的气候特征[J]. 高原气象,2004,23(增刊1):118-123.
[15]刘梅,魏建苏,俞剑蔚,等. 近57年江苏省雷暴变化趋势特征分析[J]. 热带气象学报,2010,26(2):227-234.
[16]余蓉,张小玲,李国平,等. 1971-2000年我国东部地区雷暴、冰雹、雷暴大风发生频率的变化[J]. 气象,2012,38(10):1207-1216.
[17]许迎杰,尹丽云,邓勇,等. 低纬高原雷暴的气候特征分析[J]. 高原气象,2008,27(4):888-895.
[18]尤伟,臧增亮,潘晓滨,等. 夏季青藏高原雷暴天气及其天气学特征的统计分析[J]. 高原气象,2012,31(6):1523-1529.
[19]王彦,于莉莉,朱男男,等. 渤海湾海风锋与雷暴天气[J]. 高原气象,2011,30(1):245-251.
[20]纪晓玲,王式功,穆建华,等. 宁夏雷暴天气过程划分及环流分型和环境场特征[J]. 应用气象学报,2010,21(3):329-334.
[21]Cacciamani C,Battaglia F,Patruno P,et al. A climatological study of thunderstorm activity in the Po Valley[J]. Theoretical and Applied Climatology,1995,50(3-4):185-203.
[22]Delden van A. The synoptic setting of thunderstorms in western Europe[J]. Atmospheric Research,2001,56(1):89-110.
[23]施能,陈家其,屠其璞. 中国近100年来4个年代际的气候变化特征[J]. 气象学报,1995,53(4):431-439.
[24]郭其蕴. 东亚夏季风强度指数及其变化的分析[J]. 地理学报,1983,38(3):207-217.
[25]朱乾根,施能,徐建军,等. 近百年北半球冬季大气活动中心的长期变化及其与中国气候变化的关系[J]. 气象学报,1997,55(6):750-758.
[26]李照荣,康凤琴,马胜萍. 西北地区雷暴气候特征分析[J]. 灾害学,2005,20(2):83-88.
[27]纪晓玲. 宁夏雷暴天气气候和环流特征及典型过程分析[D]. 兰州:兰州大学,2009.
[28]纪晓玲,穆建华,周虎,等. 45年来宁夏雷暴气候统计特征及趋势分析[J]. 中国沙漠,2009,29(4):744-749.
[29]郭其蕴,蔡静宁,邵雪梅,等. 东亚夏季风的年代际变率对中国气候的影响[J]. 地理学报,2003,58(4):569-576.
[30]Beringer J,Tapper N. Surface energy exchanges and interactions with thunderstorms during the Maritime Continent Thunderstorm Experiment (MCTEX)[J]. J Geophys Res:Atmospheres,2002,107(D21),doi:10. 1029/2001JD001431.
[31]魏娜,巩远发,孙娴,等. 西北地区近50a降水变化及水汽输送特征[J]. 中国沙漠,2010,30(6):1450-1457.
[32]王宝鉴,黄玉霞,何金海,等. 东亚夏季风期间水汽输送与西北干旱的关系[J]. 高原气象,2004,23(6):912-918.
[33]胡艳,端义宏. 上海地区雷暴天气的气候变化及可能影响因素[J]. 中国海洋大学学报:自然科学版,2006,36(4):588-594.
[34]赵平,周自江. 东亚副热带夏季风指数及其与降水的关系[J]. 气象学报,2005,63(6):933-941.
[35]高庆九,郝立生,闵锦忠. 华北夏季降水年代际变化与东亚夏季风、大气环流异常[J]. 南京大学学报:自然科学版,2006,42(6):590-601.
文章导航

/