论文

BCC-AGCM-Chem0模式对20世纪全球O3气候平均态及季节变化特征的模拟研究

  • 李书博 ,
  • 吴统文 ,
  • 张洁 ,
  • 张芳 ,
  • WANG Jun
展开
  • 中国气象科学研究院, 北京 100081;2. 国家气候中心, 北京 100081;3. Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, 68588-0417, USA

收稿日期: 2014-05-09

  网络出版日期: 2015-12-28

基金资助

国家重点基础研究发展计划项目(2010CB951902);公益性行业(气象)科研专项(201306048)

Simulation Study about Climatological Basic State and Seasonal Variations of Global O3 in the 20th Century

  • LI Shubo ,
  • WU Tongwen ,
  • ZHANG Jie ,
  • ZHANG Fang ,
  • WANG Jun
Expand
  • Chinese Academy of Meteorological Sciences, Beijing 100081, China;2. National Climate Center, Beijing 100081, China;3. Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, 68588-2417, USA

Received date: 2014-05-09

  Online published: 2015-12-28

摘要

利用由国家气候中心最近研发的全球大气环流化学模式BCC-AGCM-Chem0对1871-1999年全球大气O3浓度进行了模拟,并利用全球臭氧和紫外线辐射数据中心(WOUDC)提供的O3台站观测资料以及第5次耦合模式国际比较计划(CMIP5)整理的一套全球O3分析资料对BCC-AGCM-Chem0模拟的O3的气候平均态及季节变化特征进行了评估。结果表明:(1)BCC-AGCM-Chem0模式模拟出了全球年平均的O3空间分布特征,表现为北半球O3浓度高于南半球,O3的经向分布大致呈由低纬向高纬递增;模式可以再现台站观测的O3浓度垂直分布结构;相对于CMIP5分析数据,BCC-AGCM-Chem0模拟的O3气柱总量在40°S以南的南大洋区域,模拟值偏低3~6 DU,在40°S 50°N中低纬地区略偏高3~6 DU,陆地地区差异明显大于海洋地区,这些模拟偏差与地面排放和模式中O3水平和垂直平流输送的影响有关。(2)BCC-AGCM-Chem0模式对全球O3浓度的季节变化特征也有较好的模拟能力,模拟的O3柱浓度与CMIP5资料的结果在1、4、7和10月的全球格点空间相关系数分别达到0.89,0.97,0.86和0.91;模式再现了南、北半球O3浓度春季偏大、秋季偏小的特点;(3)从模式模拟和台站观测的对比分析来看,500 hPa以上的对流层中高层与以下的对流层中低层的O3季节变化峰值存在明显的不一致性,表明500 hPa以下的中低层区域O3变化可能受地面排放和干、湿等过程的影响较大,而对流层中高层的O3变化可能与化学过程和平流层向下的输送影响较大有关。

本文引用格式

李书博 , 吴统文 , 张洁 , 张芳 , WANG Jun . BCC-AGCM-Chem0模式对20世纪全球O3气候平均态及季节变化特征的模拟研究[J]. 高原气象, 2015 , 34(6) : 1601 -1615 . DOI: 10.7522/j.issn.1000-0534.2014.00119

Abstract

The global chemistry-general circulation model BCC-AGCM-Chem0, newly developed in Beijing Climate Center, is used to investigate model performance in simulations of the tropospheric ozone from 1871 to 1999. Global archive of ground-based ozone data products derived from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) as well as the ozone data provided by CMIP5 are employed for model evaluation. BCC-AGCM-Chem0 can well capture climate mean state of ozone. Ozone concentration in the Northern Hemisphere is higher than that in the Southern Hemisphere, and is poleward increase. Simulated vertical ozone profiles agreed well with the ground-based ozone data. In comparison with the CMIP5 data, BCC-AGCM-Chem0 underestimated ozone concentration over the South Ocean south of 40°S and overestimated it over the latitude band from 40°S to 50°N about 3 to 6 Dobson units. Model biases are more pronounced over land than over ocean, which may be attributable to surface ozone emission, horizontal and vertical ozone advections. Spatial structures of the ozone seasonal evolution are also well reproduced. Spatial correlation coefficients of the ozone concentration between the BCC-AGCM-Chem0 simulation and the CMIP5 data in January, April, July and October are 0. 89, 0. 97, 0. 86 and 0. 91, respectively. The ozone concentration reaches its maximum in spring and its minimum in autumn for both the Northern and Southern Hemispheres. The seasonal evolutions of the ozone concentration show different performances below and above 500 hPa. This is evident in both simulation and the ground-based observation. Ozone concentration changes at the lower troposphere may be due to surface emission, dry and wet deposition, whereas ozone concentration changes at the higher troposphere can be attributed to chemistry reactions and the downward ozone transport from the stratosphere.

参考文献

[1]Climate change 2007-the physical science basis:Working group I contribution to the fourth assessment report of the IPCC[M]. Cambridge University Press, 2007.
[2]Hansen J, Sato M, Ruedy R, et al. Radiative forcing and climate response[J]. J Geophys Res, 1997, 102(D6):6831-6864.
[3]Marenco A, Gouget H, Nédélec P, et al. Evidence of a longterm increase in tropospheric ozone from Pic du Midi data series:Consequences:Positive radiative forcing[J]. J Geophys Res:Atmospheres(1984-2012), 1994, 99(D8):16617-16632.
[4]Staehelin J, Harris N, Appenzeller C, et al. Ozone trends:a review[J]. Rev Geophys, 2001, 39(2):231-290.
[5]Lelieveld J, van Dorland R. Ozone chemistry changes in the troposphere and consequent radiative forcing of climate[M] // Atmospheric ozone as a climate gas. Heidelberg:Springer Berlin Heidelberg, 1995:227-258.
[6]Berntsen T K, Isaksen I S A, Myhre G, et al. Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing[J]. J Geophys Res:Atmospheres(1984-2012), 1997,102(D23):28101-28126.
[7]Berntsen T K, Myhre G, Stordal F, et al. Time evolution of tropospheric ozone and its radiative forcing[J]. J Geophys Res:Atmospheres(1984-2012), 2000, 105(D7):8915-8930.
[8]Brasseur G P, Kiehl J T, Müller J F, et al. Past and future changes in global tropospheric ozone:Impact on radiative forcing[J]. Geophys Res Lett, 1998, 25(20):3807-3810.
[9]Wang Y, Jacob D J. Anthropogenic forcing on tropospheric ozone and OH since preindustrial times[J]. J Geophys Res:Atmospheres(1984-2012), 1998, 103(D23):31123-31135.
[10]Stevenson D S,Johnson C E,Collins W J, et al. Evolution of tropospheric ozone radiative forcing[J]. Geophys Res Lett,1998, 25(20):3819-3822.
[11]Mickley L J, Murti P P, Jacob D J, et al. Radiative forcing from tropospheric ozone calculated with a unified chemistry-climate model[J]. J Geophys Res: Atmospheres(1984-2012),1999, 104(D23):30153-30172.
[12]Shindell D T, Schmidt G A, Miller R L, et al. Northern Hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing[J]. J Geophys Res:Atmospheres (1984-2012), 2001, 106(D7):7193-7210.
[13]Shindell D T, Faluvegi G, Bell N. Preindustrial-to-present-day radiative forcing by tropospheric ozone from improved simulations with the GISS chemistry-climate GCM[J]. Atmospheric Chemistry and Physics, 2003, 3(5):1675-1702.
[14]Hauglustaine D A, Brasseur G P. Evolution of tropospheric ozone under anthropogenic activities and associated radiative forcing of climate[J]. J Geophys Res:Atmospheres(1984-2012), 2001, 106(D23):32337-32360.
[15]Horowitz L W, Walters S, Mauzerall D L, et al. A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2[J]. J Geophys Res: Atmospheres(1984 -2012), 2003, 108(D24), doi:10. 1029/2002JD002853.
[16]Liao H, Chen W T, Seinfeld J H. Role of climate change in global predictions of future tropospheric ozone and aerosols[J]. J Geophys Res:Atmospheres(1984 -2012), 2006, 111(D12), doi:10. 1029/2005JD006852.
[17]Liao H, Zhang Y, Chen W T, et al. Effect of chemistry-aerosol-climate coupling on predictions of future climate and future levels of tropospheric ozone and aerosols[J]. J Geophys Res: Atmospheres(1984-2012), 2009, 114(D10), doi:10. 1029/2008JD010984.
[18]罗淦, 王自发. 全球环境大气输送模式(GEATM)的建立及其验证[J]. 大气科学, 2006, 30(3): 504-518.
[19]王自发, 庞成明, 朱江, 等. 大气环境数值模拟研究新进展[J]. 大气科学, 2008, 32(4):987-995.
[20]侯雪伟, 朱彬, 康汉青, 等. MOZART-4大气化学模式模拟东亚季风对对流层污染物的影响:模式验证[J]. 高原气象,2013, 32(2):387-401, doi:10. 7522/j. issn. 1000-0534. 2012. 00038.
[21]Kinnison D E, Brasseur G P, Walters S, et al. Sensitivity of chemical tracers to meteorological parameters in the MOZART3 chemical transport model[J]. J Geophys Res:Atmospheres (1984 -2012), 2007, 112(D20), doi:10.1029/2006JD 007879.
[22]Emmons L K, Walters S, Hess P G, et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4(MOZART-4)[J]. Geoscientific Model Development, 2010, 3(1):43-67.
[23]Bey I, Jacob D J, Yantosca R M, et al. Global modeling of tropospheric chemistry with assimilated meteorology:Model description and evaluation[J]. J Geophys Res, 2001, 106(D19):23073-23095.
[24]Watanabe S, Hajima T, Sudo K, et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments[J]. Geoscientific Model Development, 2011, 4(4):845-872.
[25]Collins W J, Bellouin N, Doutriaux-Boucher M, et al. Development and evaluation of an Earth-system model-HadGEM2[J]. Geoscientific Model Development, 2011, 4(4):1051-1075.
[26]Shindell D T, Pechony O, Faluvegi G S, et al. Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations[J]. Atmospheric Chemistry and Physics, 2013, 13:2653-2689.
[27]Bellouin N, Rae J, Jones A, et al. Aerosol forcing in the Climate Model Intercomparison Project(CMIP5)simulations by HadGEM2-ES and the role of ammonium nitrate[J]. J Geophys Res:Atmospheres(1984 -2012), 2011, 116(D20), doi:10. 1029/2011JD016074.
[28]Wu T, Yu R, Zhang F. A modified dynamic framework for the atmospheric spectral model and its application[J]. J Atmos Sci, 2008, 65(7):2235-2253.
[29]Wu T, Yu R, Zhang F, et al. The Beijing Climate Center atmospheric general circulation model:Description and its performance for the present-day climate[J]. Climate Dyn, 2010, 34(1):123-147, doi:10. 1007/s00382-008-0487-2.
[30]Wu Tongwen. A Mass-Flux Cumulus parameterization scheme for large-scale models:Description and test with observations[J]. Climate Dyn, 2012, 38(3-4):725-744, doi:10. 1007/s00382-011-0995-3.
[31]Wu T, Li W, Ji J, et al. Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century[J]. J Geophys Res:Atmospheres(1984-2012),2013, 118(10):4326-4347, doi:10. 1002/jgrd. 50320.
[32]Wu Tongwen, Song Lianchun, Li Weiping, et al. An overview of progress in climate system model development at the Beijing Climate Center applications for climate change studies[J]. Acta Meteor Sini, 2014,27, doi:10. 1007/s13351-014-3041-7.
[33]Sander S P, Friedl R R, DeMore W B, et al. Chemical kinetics and photochemical data for use in stratospheric modeling. Supplement to evaluation 12:Update of key reactions,JPL Publication 00-3[R]. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 2000.
[34]Tyndall G S, Cox R A, Granier C, et al. Atmospheric chemistry of small organic peroxy radicals[J]. J Geophys Res: Atmospheres(1984-2012), 2001, 106(D11):12157-12182.
[35]Wesely M L. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models[J]. Atmospheric Environment, 1989, 23(6):1293-1304.
[36]Hess P G, Flocke S, Lamarque J F, et al. Episodic modeling of the chemical structure of the troposphere as revealed during the spring MLOPEX 2 intensive[J]. J Geophys Res:Atmospheres(1984-2012), 2000, 105(D22):26809-26839.
[37]Giorgi F, Chameides W L. The rainout parameterization in a photochemical model[J]. J Geophys Res: Atmospheres (1984-2012), 1985, 90(D5):7872-7880.
[38]Lelieveld J. A 1° × 1° resolution dataset of historical anthropogenic trace gas emissions for the period 1890-1990[J]. Global Biogeochem Cycles, 2001, 15(4), 909-928.
[39]Schultz M, Rast S, Pulles T, et al. Emission data sets and methodologies for estimating emissions[J]. RETRO Project Report, 2007, 6(D1):77.
[40]Schultz M G, Heil A, Hoelzemann J J, et al. Global wildland fire emissions from 1960 to 2000[J]. Global Biogeochemical Cycles, 2008, 22(2), doi:10. 1029/ 2007GB003031,2008.
[41]Smith S J, Andres R, Conception E, et al. Historical sulfur dioxide emissions 1850-2000:methods and results[R]. PNNL Research Report, Joint Global Change Research Institute, 2004, 33(3):393-407
[42]Bond T C, Bhardwaj E, Dong R, et al. Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000[J]. Global Biogeochemical Cycles, 2007, 21(2), doi:10. 1029/2006GB002840.
[43]Junker C, Liousse C. A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860-1997[J]. Atmospheric Chemistry and Physics, 2008, 8(5):1195-1207.
[44]Mieville A, Granier C, Liousse C, et al. Emissions of gases and particles from biomass burning using satellite data and an historical reconstruction[J]. Atmos Environ, 2010, 44:1469-1477.
[45]van der Werf G R, Randerson J T, Giglio L, et al. Interannual variability in global biomass burning emissions from 1997 to 2004[J]. Atmospheric Chemistry and Physics, 2006, 6(11):3423-3441.
[46]FAO. WRB(World ReferenceBase) Map of World Soil Resources. Land and Water Development Division AGL[M/OL]. Food and Agriculture Organization of the United Nations, Rome, Italy, http://www.fao.org/ag/agl/agll/wrb/soilres. stm, 2003.
[47]Eyring V, Isaksen I S A, Berntsen T, et al. Transport impacts on atmosphere and climate:Shipping[J]. Atmos Environ, 2010, 44(37):4735-4771.
[48]Buhaug ?, Corbett J J, Endresen ?, et al. Updated study on greenhouse gas emissions from ships:phase I report[R]. International Maritime Organization(IMO), London, UK, 2008:129.
[49]Sausen R, Schumann U. Estimates of the climate response to aircraft CO2 and NOx emissions scenarios[J]. Climatic Change, 2000, 44(1-2):27-58.
[50]JMA, MSC, DWD-MOHp, NOAA-CMDL and USDA_CSU.World Ozone and Ultraviolet Radiation Data Centre (WOUDC) [D/OL]. http://www.woudc.org, November 26, 2013.
[51]Cionni I, Eyring V, Lamarque J F, et al. Ozone database in support of CMIP5 simulations:Results and corresponding radiative forcing[J]. Atmospheric Chemistry and Physics, 2011, 11(21):11267-11292.
[52]郭冬, 吕达仁, 孙照渤. 全球平流层, 对流层质量交换的季节变化特征[J]. 自然科学进展, 2007, 17(10):1391-1400.
[53]郭世昌, 段雪梅, 苏锦兰, 等. 特大森林火灾对O3总量变化影响的初步分析[J]. 高原气象, 2014, 33(2):567-573, doi:10. 7522/j. issn. 1000-0534. 2012. 00196.
[54]王卫国, 梁俊平, 王颢樾, 等. 青藏高原及附近区域穿越对流层顶的质量和臭氧通量研究[J]. 高原气象, 2010, 29(3):554-562.
[55]陈创, 田文寿, 田红瑛, 等. 青藏高原东北侧臭氧垂直分布与平流层-对流层物质交换[J]. 高原气象, 2012, 31(2), 295-303.
[56]周顺武, 杨双艳, 张人禾, 等. 近30年青藏高原臭氧总量亏损的可能原因及其与对流层顶高度的联系[J]. 高原气象,2012, 31(6):1471-1478.
文章导航

/