[1]Climate change 2007-the physical science basis:Working group I contribution to the fourth assessment report of the IPCC[M]. Cambridge University Press, 2007.
[2]Hansen J, Sato M, Ruedy R, et al. Radiative forcing and climate response[J]. J Geophys Res, 1997, 102(D6):6831-6864.
[3]Marenco A, Gouget H, Nédélec P, et al. Evidence of a longterm increase in tropospheric ozone from Pic du Midi data series:Consequences:Positive radiative forcing[J]. J Geophys Res:Atmospheres(1984-2012), 1994, 99(D8):16617-16632.
[4]Staehelin J, Harris N, Appenzeller C, et al. Ozone trends:a review[J]. Rev Geophys, 2001, 39(2):231-290.
[5]Lelieveld J, van Dorland R. Ozone chemistry changes in the troposphere and consequent radiative forcing of climate[M] // Atmospheric ozone as a climate gas. Heidelberg:Springer Berlin Heidelberg, 1995:227-258.
[6]Berntsen T K, Isaksen I S A, Myhre G, et al. Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing[J]. J Geophys Res:Atmospheres(1984-2012), 1997,102(D23):28101-28126.
[7]Berntsen T K, Myhre G, Stordal F, et al. Time evolution of tropospheric ozone and its radiative forcing[J]. J Geophys Res:Atmospheres(1984-2012), 2000, 105(D7):8915-8930.
[8]Brasseur G P, Kiehl J T, Müller J F, et al. Past and future changes in global tropospheric ozone:Impact on radiative forcing[J]. Geophys Res Lett, 1998, 25(20):3807-3810.
[9]Wang Y, Jacob D J. Anthropogenic forcing on tropospheric ozone and OH since preindustrial times[J]. J Geophys Res:Atmospheres(1984-2012), 1998, 103(D23):31123-31135.
[10]Stevenson D S,Johnson C E,Collins W J, et al. Evolution of tropospheric ozone radiative forcing[J]. Geophys Res Lett,1998, 25(20):3819-3822.
[11]Mickley L J, Murti P P, Jacob D J, et al. Radiative forcing from tropospheric ozone calculated with a unified chemistry-climate model[J]. J Geophys Res: Atmospheres(1984-2012),1999, 104(D23):30153-30172.
[12]Shindell D T, Schmidt G A, Miller R L, et al. Northern Hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing[J]. J Geophys Res:Atmospheres (1984-2012), 2001, 106(D7):7193-7210.
[13]Shindell D T, Faluvegi G, Bell N. Preindustrial-to-present-day radiative forcing by tropospheric ozone from improved simulations with the GISS chemistry-climate GCM[J]. Atmospheric Chemistry and Physics, 2003, 3(5):1675-1702.
[14]Hauglustaine D A, Brasseur G P. Evolution of tropospheric ozone under anthropogenic activities and associated radiative forcing of climate[J]. J Geophys Res:Atmospheres(1984-2012), 2001, 106(D23):32337-32360.
[15]Horowitz L W, Walters S, Mauzerall D L, et al. A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2[J]. J Geophys Res: Atmospheres(1984 -2012), 2003, 108(D24), doi:10. 1029/2002JD002853.
[16]Liao H, Chen W T, Seinfeld J H. Role of climate change in global predictions of future tropospheric ozone and aerosols[J]. J Geophys Res:Atmospheres(1984 -2012), 2006, 111(D12), doi:10. 1029/2005JD006852.
[17]Liao H, Zhang Y, Chen W T, et al. Effect of chemistry-aerosol-climate coupling on predictions of future climate and future levels of tropospheric ozone and aerosols[J]. J Geophys Res: Atmospheres(1984-2012), 2009, 114(D10), doi:10. 1029/2008JD010984.
[18]罗淦, 王自发. 全球环境大气输送模式(GEATM)的建立及其验证[J]. 大气科学, 2006, 30(3): 504-518.
[19]王自发, 庞成明, 朱江, 等. 大气环境数值模拟研究新进展[J]. 大气科学, 2008, 32(4):987-995.
[20]侯雪伟, 朱彬, 康汉青, 等. MOZART-4大气化学模式模拟东亚季风对对流层污染物的影响:模式验证[J]. 高原气象,2013, 32(2):387-401, doi:10. 7522/j. issn. 1000-0534. 2012. 00038.
[21]Kinnison D E, Brasseur G P, Walters S, et al. Sensitivity of chemical tracers to meteorological parameters in the MOZART3 chemical transport model[J]. J Geophys Res:Atmospheres (1984 -2012), 2007, 112(D20), doi:10.1029/2006JD 007879.
[22]Emmons L K, Walters S, Hess P G, et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4(MOZART-4)[J]. Geoscientific Model Development, 2010, 3(1):43-67.
[23]Bey I, Jacob D J, Yantosca R M, et al. Global modeling of tropospheric chemistry with assimilated meteorology:Model description and evaluation[J]. J Geophys Res, 2001, 106(D19):23073-23095.
[24]Watanabe S, Hajima T, Sudo K, et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments[J]. Geoscientific Model Development, 2011, 4(4):845-872.
[25]Collins W J, Bellouin N, Doutriaux-Boucher M, et al. Development and evaluation of an Earth-system model-HadGEM2[J]. Geoscientific Model Development, 2011, 4(4):1051-1075.
[26]Shindell D T, Pechony O, Faluvegi G S, et al. Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations[J]. Atmospheric Chemistry and Physics, 2013, 13:2653-2689.
[27]Bellouin N, Rae J, Jones A, et al. Aerosol forcing in the Climate Model Intercomparison Project(CMIP5)simulations by HadGEM2-ES and the role of ammonium nitrate[J]. J Geophys Res:Atmospheres(1984 -2012), 2011, 116(D20), doi:10. 1029/2011JD016074.
[28]Wu T, Yu R, Zhang F. A modified dynamic framework for the atmospheric spectral model and its application[J]. J Atmos Sci, 2008, 65(7):2235-2253.
[29]Wu T, Yu R, Zhang F, et al. The Beijing Climate Center atmospheric general circulation model:Description and its performance for the present-day climate[J]. Climate Dyn, 2010, 34(1):123-147, doi:10. 1007/s00382-008-0487-2.
[30]Wu Tongwen. A Mass-Flux Cumulus parameterization scheme for large-scale models:Description and test with observations[J]. Climate Dyn, 2012, 38(3-4):725-744, doi:10. 1007/s00382-011-0995-3.
[31]Wu T, Li W, Ji J, et al. Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century[J]. J Geophys Res:Atmospheres(1984-2012),2013, 118(10):4326-4347, doi:10. 1002/jgrd. 50320.
[32]Wu Tongwen, Song Lianchun, Li Weiping, et al. An overview of progress in climate system model development at the Beijing Climate Center applications for climate change studies[J]. Acta Meteor Sini, 2014,27, doi:10. 1007/s13351-014-3041-7.
[33]Sander S P, Friedl R R, DeMore W B, et al. Chemical kinetics and photochemical data for use in stratospheric modeling. Supplement to evaluation 12:Update of key reactions,JPL Publication 00-3[R]. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 2000.
[34]Tyndall G S, Cox R A, Granier C, et al. Atmospheric chemistry of small organic peroxy radicals[J]. J Geophys Res: Atmospheres(1984-2012), 2001, 106(D11):12157-12182.
[35]Wesely M L. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models[J]. Atmospheric Environment, 1989, 23(6):1293-1304.
[36]Hess P G, Flocke S, Lamarque J F, et al. Episodic modeling of the chemical structure of the troposphere as revealed during the spring MLOPEX 2 intensive[J]. J Geophys Res:Atmospheres(1984-2012), 2000, 105(D22):26809-26839.
[37]Giorgi F, Chameides W L. The rainout parameterization in a photochemical model[J]. J Geophys Res: Atmospheres (1984-2012), 1985, 90(D5):7872-7880.
[38]Lelieveld J. A 1° × 1° resolution dataset of historical anthropogenic trace gas emissions for the period 1890-1990[J]. Global Biogeochem Cycles, 2001, 15(4), 909-928.
[39]Schultz M, Rast S, Pulles T, et al. Emission data sets and methodologies for estimating emissions[J]. RETRO Project Report, 2007, 6(D1):77.
[40]Schultz M G, Heil A, Hoelzemann J J, et al. Global wildland fire emissions from 1960 to 2000[J]. Global Biogeochemical Cycles, 2008, 22(2), doi:10. 1029/ 2007GB003031,2008.
[41]Smith S J, Andres R, Conception E, et al. Historical sulfur dioxide emissions 1850-2000:methods and results[R]. PNNL Research Report, Joint Global Change Research Institute, 2004, 33(3):393-407
[42]Bond T C, Bhardwaj E, Dong R, et al. Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000[J]. Global Biogeochemical Cycles, 2007, 21(2), doi:10. 1029/2006GB002840.
[43]Junker C, Liousse C. A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860-1997[J]. Atmospheric Chemistry and Physics, 2008, 8(5):1195-1207.
[44]Mieville A, Granier C, Liousse C, et al. Emissions of gases and particles from biomass burning using satellite data and an historical reconstruction[J]. Atmos Environ, 2010, 44:1469-1477.
[45]van der Werf G R, Randerson J T, Giglio L, et al. Interannual variability in global biomass burning emissions from 1997 to 2004[J]. Atmospheric Chemistry and Physics, 2006, 6(11):3423-3441.
[46]FAO. WRB(World ReferenceBase) Map of World Soil Resources. Land and Water Development Division AGL[M/OL]. Food and Agriculture Organization of the United Nations, Rome, Italy, http://www.fao.org/ag/agl/agll/wrb/soilres. stm, 2003.
[47]Eyring V, Isaksen I S A, Berntsen T, et al. Transport impacts on atmosphere and climate:Shipping[J]. Atmos Environ, 2010, 44(37):4735-4771.
[48]Buhaug ?, Corbett J J, Endresen ?, et al. Updated study on greenhouse gas emissions from ships:phase I report[R]. International Maritime Organization(IMO), London, UK, 2008:129.
[49]Sausen R, Schumann U. Estimates of the climate response to aircraft CO2 and NOx emissions scenarios[J]. Climatic Change, 2000, 44(1-2):27-58.
[50]JMA, MSC, DWD-MOHp, NOAA-CMDL and USDA_CSU.World Ozone and Ultraviolet Radiation Data Centre (WOUDC) [D/OL]. http://www.woudc.org, November 26, 2013.
[51]Cionni I, Eyring V, Lamarque J F, et al. Ozone database in support of CMIP5 simulations:Results and corresponding radiative forcing[J]. Atmospheric Chemistry and Physics, 2011, 11(21):11267-11292.
[52]郭冬, 吕达仁, 孙照渤. 全球平流层, 对流层质量交换的季节变化特征[J]. 自然科学进展, 2007, 17(10):1391-1400.
[53]郭世昌, 段雪梅, 苏锦兰, 等. 特大森林火灾对O3总量变化影响的初步分析[J]. 高原气象, 2014, 33(2):567-573, doi:10. 7522/j. issn. 1000-0534. 2012. 00196.
[54]王卫国, 梁俊平, 王颢樾, 等. 青藏高原及附近区域穿越对流层顶的质量和臭氧通量研究[J]. 高原气象, 2010, 29(3):554-562.
[55]陈创, 田文寿, 田红瑛, 等. 青藏高原东北侧臭氧垂直分布与平流层-对流层物质交换[J]. 高原气象, 2012, 31(2), 295-303.
[56]周顺武, 杨双艳, 张人禾, 等. 近30年青藏高原臭氧总量亏损的可能原因及其与对流层顶高度的联系[J]. 高原气象,2012, 31(6):1471-1478.