论文

一次异常路径持续强降水中尺度对流系统分析

  • 郭大梅 ,
  • 刘勇 ,
  • 马晓华 ,
  • 李萍云
展开
  • 陕西省气象台, 西安 710015

收稿日期: 2014-01-13

  网络出版日期: 2015-12-28

基金资助

陕西省气象局预报员专项(2015Y-4)

Analysis on Unusual Path Associated with Mesoscale Convective System in a Continuous Heavy Rain

  • GUO Damei ,
  • LIU Yong ,
  • MA Xiaohua ,
  • LI Pingyun
Expand
  • Shaanxi Meteorological Observatory, Xi'an 710015, China

Received date: 2014-01-13

  Online published: 2015-12-28

摘要

利用实况观测、 NCEP、 卫星云图FY-2E和自动气象站资料对一次从华北到西北地区东部持续强对流暴雨天气进行了分析, 结果表明: 500 hPa东北冷涡底部的短波槽、 大陆高压东侧的东北风、 低层切变线及冷平流、 地面冷高压底部的冷空气为中尺度系统的产生、 发展、 移动提供了有利的天气背景; 强对流暴雨天气是由β中尺度、 α中尺度对流系统造成的, 中尺度对流系统大致是由东北向西南方向移动, 历时23 h。东路冷空气与华北暖湿气流交汇, 触发对流产生; MCS的移动方向取决于高低空的风向、 风速。当中高层风速较弱、 低层风速较强、 风向相反时, MCS移动路径与低层风向一致; 当中高层风速较强、 低层风速较弱、 风向相反时, MCS移动路径与中高层风向一致。强对流暴雨过程发生前, 整层温度平流为零, 中高层的风较弱, 风垂直切变较小。

本文引用格式

郭大梅 , 刘勇 , 马晓华 , 李萍云 . 一次异常路径持续强降水中尺度对流系统分析[J]. 高原气象, 2015 , 34(6) : 1648 -1657 . DOI: 10.7522/j.issn.1000-0534.2014.00076

Abstract

By using observation data, NCEP/NCAR reanalysis data, FY-2E product and the automatic station data, a continued strong convection rainstorm in North China to the eastern region of Northwest China is analyzed. The obtained result are as follows.Firstly, 500 hPa short wave trough which locates in the bottom of the northeast cold vortex, the northeast wind on the east side of the continent high, shear line and cold temperature advection in lower levels and the cold air in surface provide favorable synoptic background for the mesoscale convective system's occurrence, development and movement. Secondly, meso-β scale and meso-α scale convective systems cause the strong convection rainstorm. With 23 h, mesoscale convective systems move roughly from southwest to northeast. Interaction between cold air from the eastern area and warm moisture in North China, convection has triggered. Thirdly, the moving direction of MCS depends on wind direction and speed in the whole layer. When there is the weak wind speed on high layer and middle layer and opposite strong wind speed on low layer, the mesoscale convective system's moving path is consist with wind direction on low layer. When there is the weak wind speed on low layer and opposite strong wind on high and middle layers, strong wind speed on high and middle layers, the mesoscale convective system's moving path is consist with wind direction on high and middle layers. Fourthly, the all layers are no temperature advection before the convective precipitation occurs. At the same time, the high and middle layers wind is very weak, and the vertical wind shear is very small.

参考文献

[1]赵桂香, 赵建峰, 杨东, 等. 山西一次大暴雨过程云图及环境场的特征分析[J]. 高原气象, 2013, 32(6): 1747-1757, doi: 10.7522/j.issn.1000-0534.2012.00163.
[2]刘新伟, 段海霞, 杨晓军, 等. 2010年7月甘肃大暴雨及其低涡结构分析[J]. 高原气象, 2013, 32(4): 1032-1041, doi: 10.7522/j.issn.1000-0534.2012.00098.
[3]赵玉春, 王叶红. 高原涡诱生西南涡特大暴雨成因的个例研究[J]. 高原气象, 2010, 29(4): 819-831.
[4]钟水新, 王东海, 张人禾, 等. 一次冷涡发展阶段大暴雨过程的中尺度对流系统研究[J]. 高原气象, 2013, 32(2): 435-445, doi: 10.7522/j.issn.1000-0534.2012.00042.
[5]许美玲, 尹丽云, 金少华, 等. 云南突发性特大暴雨过程成因分析[J]. 高原气象, 2013, 32(4): 1062-1073, doi: 10.7522/j.issn.1000-0534.2012.00085.
[6]徐双柱, 吴翠红, 吴涛. “2011.6.18”湖北大暴雨成因分析[J]. 高原气象, 3013, 32(4): 1106-1114, doi: 10.7522/j.issn.1000-0534.2012.00104.
[7]黎惠金, 李向红, 黄芳, 等. 广西一次特大暴雨的MCC演变过程及结构特征分析[J]. 高原气象, 2013, 32(3): 806-817, doi: 10.7522/j.issn.1000-0534.2012.00074.
[8]井喜, 李社宏, 屠妮妮, 等. 黄河中下游一次MCC和中-β尺度强对流云团相互作用暴雨过程综合分析[J]. 高原气象, 2011, 30(4): 913-928.
[9]杨康权, 张琳, 肖递祥, 等. 四川盆地西部一次大暴雨过程的中尺度特征分析[J]. 高原气象, 2013, 32(2): 357-367, doi: 10.7522/j.issn.1000-0534.2012.00035.
[10]井喜, 屠妮妮, 井宇, 等. 中国MCC 时空分布与天气学特征分析[J]. 高原气象, 2013, 32(6): 1597-1607, doi: 10.7522/j.issn.1000-0534.2012.00141.
[11]杜小玲, 杨静, 彭芳, 等. 贵州望谟初夏暴雨环境场和物理量场合成分析[J]. 高原气象, 2013, 32(5): 1400-1413, doi: 10.7522/j.issn.1000-0534.2012.00131.
[12]王伏村, 许东蓓, 修韶宇, 等. 一次西北地区东部大暴雨的物理机制分析[J]. 高原气象, 2014, 33(6): 1501-1513, doi: 10.7522/j.issn.1000-0534.2013.00104.
[13]白涛, 李崇银, 王铁, 等. 干侵入对陕西“2008.07.21”暴雨过程的影响分析[J]. 高原气象, 2013, 32(2): 345-356, doi: 10.7522/j.issn.1000-0534.2012.00034.
[14]徐燚, 闫敬华, 王谦谦, 等. 华南暖区暴雨的一种低层重力波触发机制[J]. 高原气象, 2013, 32(4): 1050-1061, doi: 10.7522/j.issn.1000-0534.2012.00100.
[15]杜小玲, 彭芳, 吴古会, 等. 应用新型辐散方程诊断“6.28”关岭大暴雨的激发和维持机制[J]. 高原气象, 2013, 32(3): 728-738, doi:10.7522/j.issn.1000-0534.2012.00068.
[16]葛非, 郭胜利, 谌芸, 等. 对流层中层大气能量转换特征与暴雨激发和维持的关系[J]. 高原气象, 2013, 32(3): 762-769, doi: 10.7522/j.issn.1000-0534.2012.00071.
[17]Shi J, Scofield R A. Satellite-observed mesoscale convective system (MCS) propagation characteristics and a 3-12 hour heavy precipitation forecast index[R]. NOAA Tech Memo NESDIS 20, US Dept of Commerce, Washington, DC, 1987: 43.
[18]Corfidi S F, Merritt J H, Fritsch J M. Predicting the movement of mesoscale convective complexes[J]. Wea Forecasting, 1996, 11: 41-46.
[19]Charles A, Doswell Ⅲ, Harold E, et al. Flash Flood Forecasting: An ingredients-based methodology[J]. Wea Forecasting, 1996, 11: 560-581.
[20]寿绍文, 励申申, 林开平, 等. 一次江淮暴雨过程的中β尺度分析[J]. 应用气象学报, 1994, 5(3): 257-265.
[21]郑媛媛, 张小玲, 朱红芳, 等. 2007年7月8日特大暴雨过程的中尺度特征[J]. 气象, 2009, 35(2): 3-8.
文章导航

/