利用常规观测资料、 1°×1° NCEP再分析资料、 微波辐射计及风廓线雷达等加密观测资料, 针对2011年6月23日北京地区发生的一次强对流暴雨过程, 对高低层干冷空气活动及其作用进行了分析。结果表明: 北京地区高低层配置符合干侵入三维模型, 中层以上的干区与水汽图像的暗区相吻合, 同时配合有自高纬向低纬传播的高位涡带, 北京地区干侵入特征明显。微波辐射计与风廓线雷达观测能够实时追踪干冷空气造成的温度、 湿度和风场变化, 6 km高度以上的温度和湿度变化最为显著, 两者下降到最低点的时间与强对流的触发时间有较好的一致性, 高层干冷空气对强降水有一定激发作用。干侵入降低了大气稳定度, 造成高层θse低值中心垂直位于低层θse高值中心之上, 探空曲线呈典型的喇叭形开口结构。回流干冷空气与气旋前部暖湿气流形成准静止锋, 850 hPa以下低层温度锋区显著, 为对流的发展加强提供了热动力条件, 回流冷空气形成的东部高压有利于雷暴系统在北京地区滞留, 延长了降水时间。
By using conventional observation data, radar reflectivity, 1°×1° NCEP reanalysis data and unconventional observations including wind profile radar and ground-based radiometer data, the cold air and its influence was studied according to a strong convective storm in Beijing area on 23 June 2011. The main results are as follows: The dry zone and high potential area above middle-level corresponded well with dark zone in WV image, which showed the dry intrusion was obvious. The temperature, humidity and wind changed instinctly which was observed by the ground-based radiometer and profile radar, the storm was triggered just after the temperature and humidity above 5 km decreased to the lowest. The dry intrusion caused the low θse center just over the high θse center, which led to strong convective instability. The lower level northeast airflow was cold and dry, and the corresponding temperature front was distinct under 850 hPa, which provided dynamical and thermal effect for the development of the convective system. The backflow cold formed anticyclone on the east of Beijing, which was good for the convective system to stay at Beijing and the rainfall to sustain longer.
[1]于玉斌, 姚秀萍. 干侵入的研究及其应用进展[J]. 气象学报, 2003, 61(6): 669-778.
[2]Browning K A. Extratropical cyclone-a forecaster's perspective[J]. J Appl Meteor, 1997, 4: 293-300.
[3]杨贵名, 毛冬艳, 姚秀萍. 强降水和黄海气旋中的干侵入分析[J]. 高原气象, 2006, 25(1): 16-28.
[4]杨贵名, 毛冬艳, 姚秀萍. 梅雨期一次黄淮气旋发展的干侵入特征分析[J]. 热带气象学报, 2006, 22(2): 176-183.
[5]吴迪, 楚志刚, 闫立奇. 东北冷涡发展过程的位涡收支分析[J]. 高原气象, 2015, 34(1): 103-112, doi: 10.7522/j.issn.1000-0534.2013.00121.
[6]梁军, 陈联寿, 张胜军, 等. 冷空气影响辽东半岛热带气旋降水的数值试验[J]. 大气科学, 2008, 32(5): 1107-1118.
[7]易笑园, 李泽椿, 陈涛, 等. 2007年3月3-5日强雨雪过程中的干冷空气活动及其作用[J]. 南京气象学院学报, 2009, 32(2): 307-313.
[8]郁淑华. 高原低涡东移过程中的水汽图像[J]. 高原气象, 2002, 21(2): 199-204.
[9]张迎新, 张守保. 华北平原回流天气的结构特征[J]. 南京气象学院学报, 2006, 29(1): 107-113.
[10]周雪松, 谈哲敏. 华北回流暴雪发展机理个例研究[J]. 气象, 2008, 34(1): 18-26.
[11]陈雪珍, 慕建利, 赵桂香, 等. 华北暴雪过程中的急流特征分析[J]. 高原气象, 2014, 33(4): 1069-1075, doi: 10.7522/j.issn.1000-0534.2013.00205.
[12]Danielson E F. Project Springfield Report[R]. ISOTOPES INC WESTWOOD N J, 1964: 99.
[13]彭治班, 刘健文, 郭虎, 等. 国外强对流天气的应用研究[M]. 北京: 气象出版社, 2001.
[14]范可, 琚建华. 位涡在云南夏季强降水预报中的应用[J]. 高原气象, 2004, 23(3): 387-393.
[15]刘红燕, 李炬, 曹小彦. 遥感大气结构的地基12通道微波辐射计测量结果分析[J]. 遥感技术与应用, 2007, 22(2): 222-229.
[16]朱乾根, 林锦瑞, 寿绍文, 等. 天气学原理和方法[M]. 北京: 气象出版社, 2000: 362-364.
[17]陈明轩, 王迎春, 高峰, 等. 基于雷达资料4DVar的低层热力反演系统及其在北京奥运期间的初步应用分析[J]. 气象学报, 2011, 69(1): 64-78.