论文

豫中北一次重致灾强对流天气过程剖析

  • 司福意 ,
  • 周顺武 ,
  • 王传辉 ,
  • 徐威
展开
  • 南京信息工程大学气象灾害预报预警与评估协同创新中心, 南京 210044;2. 焦作市气象局, 焦作 454003;3. 安徽省气象局, 合肥 230061

收稿日期: 2014-05-15

  网络出版日期: 2015-12-28

基金资助

国家重点基础研究发展规划项目(2012CB955204);国家自然科学基金项目(41275095);焦作市科技项目(2004-17)

Analysis of a Severe Convection Event Causing Heavy Disaster in North Central of Henan

  • SI Fuyi ,
  • ZHOU Shunwu ,
  • WANG Chuanhui ,
  • XU Wei
Expand
  • Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China;2. Jiaozuo Meteorological Office, Jiaozuo 454003, china;3. Anhui Province Public Weather Service Center, Hefei 230061, China

Received date: 2014-05-15

  Online published: 2015-12-28

摘要

利用常规观测资料、0.5° × 0.5° NCEP FNL资料和雷达资料,基于“流型识别”和“配料”方法,对2013年8月1日发生在河南省中北部一次致灾严重的混合性强对流天气过程进行了分析,得到以下主要结论:(1) 这是一次由西风槽前倾引起的罕见区域性强对流天气过程,而致使冷槽前倾的原因是近地面暖湿空气对中低层东移南下冷空气的阻挡和削弱;(2) 在“流型识别”基础上,结合分析了强对流天气4大构成要素的动态演变,有助于提高强对流天气预报能力;(3) 当豫北处于副热带高压边缘时,西风槽的出现加大了中低纬度环流的经向度,使得水汽输送和辐合条件改善较快;(4) 中空干冷急流入侵叠加到近地面风场之上所形成的强高低空垂直风切变是风暴系统发展和维持的重要因素;(5) 雷达跟踪显示该风暴系统源于两条“弓形”(飑线)回波的交汇合并,在激发出强对流天气之后主系统再次发展成典型的飑线,并沿着地面辐合线由西南向东北传播,可采用外推法确定其下一步影响区域,有30 min以上的提前预警时效。

本文引用格式

司福意 , 周顺武 , 王传辉 , 徐威 . 豫中北一次重致灾强对流天气过程剖析[J]. 高原气象, 2015 , 34(6) : 1732 -1740 . DOI: 10.7522/j.issn.1000-0534.2015.00027

Abstract

By using the MICAPS conventional observation data, 0. 5° × 0. 5° NCEP FNL data and radar data, combined traditional “pattern recognition” method with “ ingredients-based” method, the rare regional server convective weather of hail, thunderstorm and gale that happened in the morning of August 1, 2013 in North central Henan was analyzed. The results are as follow:(1) This process was caused by a forward-tilting trough, and its formation cause was the warm moist air hindered and weakened the trough near the ground.(2) On the basic of circulation classification, adopting forecast method (Ingredients-based method)to analyze the convective weather four components helped to improve the ability of strong convection weather forecast. (3) The transportation and convergence of water vapor improved rapidly because the radial degree of atmospheric circulation within the low and mid latitude increased, while westerly trough approaching the edge of subtropical high belt. (4) The invasion of mid-level dry jet and large vertical wind shear were considerably important in maintaining and developing of the storm. (5) Radar echo tracking displays that the storm system originated from the intersection and merging of two bow echoes (squall lines), and after the outbreak of severe convective weather the main system developed into a typical squall line again, which moved along the convergence line from southwest to northeast, the extrapolation method could be used to determine its next area of influence, and there were more than 30 minutes earlier warning time. In the end, a technology route about convection weather forecast was also given.

参考文献

[1]Miller R C. Notes on analysis and server-storm forecasting procedures of the Air Force Global Weather Service Central,technical report 200[R]. Air Weather Service (MAC)United States Air Force,1972.
[2]Crisp C A. Training guide for severe weather forecasters [R]. AFGWCTN-79/002. United States Air Force(MAC),Air Force Global Weather Central,1979.
[3]张小玲,张涛,刘鑫华,等. 中尺度天气的高空地面综合图分析[J]. 气象,2010,36(7): 143-150.
[4]苏永玲,何立富,巩远发,等. 京津冀地区强对流时空分布与天气学特征分析[J]. 气象,2011,37(2):177-184.
[5]郑媛媛,姚晨,郝莹,等. 不同类型大尺度环流背景下强对流天气的短时临近预报预警研究 [J]. 气象,2011,37(7):795-801.
[6]张一平,吴蓁,苏爱芳,等. 基于流型识别和物理量要素分析河南强对流天气特征 [J]. 高原气象,2013,32(5):1492-1502,doi:10. 7522/j. issn. 1000-0534. 2012. 00139.
[7]Doswell III C A,Brooks H E,Maddox R A. Flash flood forecasting:An ingredients-based methodology [J]. Wea Forecasting,1996,11(4):560-581.
[8]俞小鼎. 基于构成要素的预报方法-配料法[J]. 气象,2011,37(8):913-918.
[9]张小玲,陶诗言,孙建华. 基于“配料”的暴雨预报[J]. 大气科学,2010,34(4):754-756.
[10]吴蓁,俞小鼎,席世平,等. 基于配料法的“08·6·3”河南强对流天气分析和短时预报[J]. 气象,2011,37(1):48-58.
[11]王新敏,张霞,徐文明,等. T213/T639数值产品在河南省雷电潜势预报中的释用[J]. 气象,2011,37(5):576-582.
[12]苏爱芳,银燕,吕晓娜,等. 黄淮西部地貌过渡区深对流云的时空特征及其天气意义[J]. 气象学报,2013,71(3):383-396.
[13]李江波,王宗敏,王福侠,等. 华北冷涡连续降雹的特征与预报[J]. 高原气象,2011,30(4):1119-1131.
[14]王在文,郑永光,刘还珠,等. 蒙古冷涡影响下的北京降雹天气特征分析[J]. 高原气象,2010,29(3):763-777.
[15]郑媛媛,张雪晨,朱红芳,等. 东北冷涡对江淮飑线生成的影响研究[J]. 高原气象,2014,33(1):261-269,doi:10. 7522/j. issn. 1000-0534. 2013. 0005.
[16]慕建利,李泽椿,谌芸,等. 一次陕西关中强暴雨中尺度系统特征分析[J]. 高原气象,2014,33(1):148-161,doi:10. 7522/j. issn. 1000-0534. 2013. 00049.
[17]吴海英,陈海山,蒋义芳,等.“090603”强飑线过程动力结构特征的观测与模拟分析[J]. 高原气象,2013,32(4):1084-1094,doi:10. 7522/j. issn. 1000-0534. 2012. 00102.
[18]钟水新,王东海,张人禾,等. 一次冷涡发展阶段大暴雨过程的中尺度对流系统研究[J]. 高原气象,2013,32(2):435-445,doi:10. 7522/j. issn. 1000-0534. 2012. 00042.
[19]姚晨,郑媛媛,张雪晨. 长生命史飑线在强、弱对流降水过程中的异同点分析[J]. 高原气象,2012,31(5):1366-1375.
[20]陶诗言,丁一汇,周晓平. 暴雨和强对流天气的研究[J]. 大气科学,1979,3(3):227-238.
[21]樊李苗,俞小鼎. 中国短时强对流天气的若干环境参数特征分析[J] 高原气象,2013,32(1):156-165,doi:10. 7522/j. issn. 1000-0534. 2013. 00016.
[22]陈涛,张芳华,宗志平. 一次南方春季强对流过程中影响对流发展的环境场特征分析[J]. 高原气象,2012,31(4):1019-1031 .
[23]张素芬,鲍向东,牛淑贞. 河南省人工消雹作业判据研究[J]. 气象,1999,25(9):36-40.
[24]丁一汇,李鸿洲,章名立,等. 我国飑线发生条件的研究[J]. 大气科学,1982,6(1):18-27.
[25]张沛源,陈荣林. 多普勒速度图上的暴雨判据研究[J]. 应用气象学报,1995,6(3):373-378.
[26]Fujiata T T. Manual of downburst indentification for Project NIMROD[M]. Chicago:University of Chicago,1978:104-112.
[27]梁建宇,孙建华. 2009年6月一次飑线过程灾害性大风的形成机制[J]. 大气科学,2012,36(2):316-336.
[28]王秀明,俞小鼎,周小刚,等.“6·3”区域致灾雷暴大风形成及维持原因分析[J]. 高原气象,2012,31(2):504-514.
[29]王俊,龚佃利,刁秀广,等. 一次弓状回波、强对流风暴及合并过程研究Ⅰ:以单多普勒雷达资料为主的综合分析[J]. 高原气象,2011,30(4):1067-1077.
[30]王俊,盛日锋,陈西利. 一次弓状回波、强对流风暴及合并过程研究Ⅱ:双多普勒雷达反演三维风场分析[J]. 高原气象,2011,30(4):1078-1086.
文章导航

/