论文

山东极端强降雨风暴传播类型及流场结构特征

  • 万明波 ,
  • 孟宪贵 ,
  • 刁秀广
展开
  • 山东省气象台, 济南 250031

收稿日期: 2014-09-11

  网络出版日期: 2015-12-28

基金资助

国家自然科学基金项目(41375120);山东省科技发展计划项目(2010GSF10805);山东省气象局科研课题(2012sdqxz05,2015sdqxm01)

Propagation Patterns and Airflow Structure Characteristics of Extreme Rainstorms in Shandong

  • WAN Mingbo ,
  • MENG Xiangui ,
  • DIAO Xiuguang
Expand
  • Shandong Meteorological Observatory, Jinan 250031, China

Received date: 2014-09-11

  Online published: 2015-12-28

摘要

根据雷达反射率因子和径向速度产品演变特征,结合天气实况,对山东短时极端强降水反射率因子和流场结构进行了综合分析。结果表明,山东极端对流性强降水单体演变特征有4种类型:后向传播型、前向传播型、准静止型和再生型。后向传播型的主体降水回波产生的下沉气流与一侧的低层环境气流产生辐合上升运动,激发新的对流单体;前向传播型的主体回波后部下沉气流在地面附近辐散形成低层前沿的阵风锋,而低层暖湿入流经过阵风锋抬升进入到回波前沿的对流塔成为上升气流;准静止型回波常与中低层长时间维持的γ尺度气旋性涡旋有关;再生型回波的再生区内总是有新的单体不断生成,常与稳定少动的局地辐合区相对应。在大范围的强降水过程中,包含两种或以上演变方式。

本文引用格式

万明波 , 孟宪贵 , 刁秀广 . 山东极端强降雨风暴传播类型及流场结构特征[J]. 高原气象, 2015 , 34(6) : 1741 -1750 . DOI: 10.7522/j.issn.1000-0534.2015.00012

Abstract

Based on the radar data and extreme rainfall events,the reflectivity characteristics and airflow structures of extreme rainstorms occurred in Shandong Province were analyzed comprehensively. The results showed that the evolution of extreme rainstorms have four patterns: backward propagation, forward propagation, quasi-stationary and regeneration. For backward propagation pattern, the outflow from multicell cluster of storms interacted with the surface wind and formed areas of strong surface convergence on the upwind side, this strong convergence triggered new cells, thereby causing a cell propagation vector in the opposite direction of the steering flow. For forward propagation pattern, at low levels, cooler air diverging from the downdraft intersects the inflowing air along a gust front, creating a region of strong low- level convergence favorable for new updrafts. The quasi-stationary or motionless rainstorms often accompanied by γ-scale cyclone vortex sustaining long time in the middle-low level for the quasi-stationary pattern. As regards to regeneration pattern, regeneration zone where new cells were constantly inspired often correspond with stable and less moving local convergence zone. Two or more patterns were included in process of large scale heavy precipitation.

参考文献

[1]IPCC. Climate change 2007:The physical science basis [C] //Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge,United Kingdom and New York,USA:Cambridge University Press,2007.
[2]Tank A,Konnen G P. Trends in indices of daily temperature and precipitation extremes in Europe,1946-1999[J]. J Climate,2003,16(22):3665-3680.
[3]Kunkel K E, Andsager K,Easterling D R. Long-term trends in extreme precipitation events over the conterminous United States and Canada[J]. J Climate,1999,12:2515-2527.
[4]钱永甫,王谦谦,刘华强,等. 中国区域气候变化的模拟和问题[J]. 高原气象,1999,18(3) :341-349.
[5]翟盘茂,任福民,张强. 中国降水极值变化趋势检测[J]. 气象学报,1999,57(2):208-216.
[6]闵屾,钱永甫. 中国极端降水事件的区域性和持续性研究[J]. 水科学进展,2008,19(6):763-761.
[7]龚道溢,韩晖. 华北农牧交错带夏季极端气候的趋势分析[J]. 地理学报,2004,59(2):230-238.
[8]Maddox R A,Chappell C F,Hpxit L R.Synoptic and meso-α scale aspects of flash flood[J] .Bull Amer Meteor Soc, 1979, 60(2):115-123.
[9]Glass F H,Ferry D L,Moore J T,et al. Characteristics of heavy convective rainfall events across the mid-Mississippi valley during the warm season:Meteorological conditions and a conceptual model[C] // Preprints,14th Conference on Weather Analysis and Forecasting,Dallas,TX,Amer Meteor Soc. 1995:34-41.
[10]Junker N W,Schneider R S,Fauver S L.A study of heavy rainfall events during the great midwest flood of 1993[J] .Wea Forecasting,1999,14(5):701-712.
[11]Moore J T,Nolan S M,Glass F H,et al. Flash flood-producing high-precipitation supercells in Missouri[C] // Preprints, 14th Conference on Weather Analysis and Forecasting,Dallas, TX,Amer Meteor Soc,1995:7-12.
[12]Chappell C F.Quasi-stationary convective events[J] .Mesoscale Meteorology and Forecasting,Amer Meteor Soc,1986:289-310.
[13]Thorpe A J,Miller M J. Numerical simulations showing the role of downdraft in cumulonimbus motion and splitting[J]. Quart J Roy Meteor Soc,1978,104:873-893.
[14]Fovell R G,Ogura Y. Numerical simulation of a midlatitude squallline in two-dimensions[J]. J Atoms Sci,1988,45: 3846-3879.
[15]Fovell R G,Tan P H. The temporal behavior of numerically simulated multicell-type storms. Part II:The convective cell life cycle and cell regeneration[J]. Mon Wea Rev,1998,126:551-557.
[16]Lin Y L,Deal R L,Kulie M S. Mechanisms of cell regeneration,development and propagation within a two-dimensional multicell storm[J]. J Atoms Sci,1998,55(10):1867-1886.
[17]段旭,李英. 滇中暴雨的湿位涡诊断分析[J]. 高原气象, 2000,19(2):253-259.
[18]赵宇,龚佃利,刘诗军,等. “99. 8”山东特大暴雨形成机制的数值模拟分析[J]. 高原气象,2006,25 (1):95-104.
[19]慕建利,李泽椿,李耀辉,等. 高原东侧特大暴雨过程秦岭山脉的作用[J]. 高原气象,2009,28 (6):1282-1290.
[20]张小玲,陶诗言,孙建华. 基于“配料”的暴雨预报[J]. 大气科学,2010,34(4):754-756.
[21]曹晓岗,王慧,邹兰军,等. 上海“010805”特大暴雨与“080825”大暴雨对比分析[J] .高原气象,2011,30(3): 739-748.
[22]徐珺,毕宝贵,谌芸. 济南7·18 大暴雨中尺度分析研究[J]. 高原气象,2010,29(5):1218-1229.
[23]苗爱梅,武捷,赵海英,等. 低空急流与山西大暴雨的统计关系及流型配置[J] .高原气象,2010,29(4):939-946.
[24]谌芸,孙军,徐堵,等. 北京7·21特大暴雨极端性分析及思考(一)观测分析及思考[J]. 气象,2012,38(10):1255-1266.
[25]苗爱梅,郝振荣,贾利冬,等. “0702”山西大暴雨过程的多尺度特征[J]. 高原气象,2014,33(3):786-800,doi:10. 7522/j. issn. 1000-0534. 2013. 00014.
[26]罗娟,陈忠明. 一次湖南暴雨过程β中尺度系统分析与模拟[J]. 高原气象,2014,33(2):495-503,doi:10. 7522/j.issn. 1000-0534. 2013. 00011.
[27]孙继松,何娜,郭锐,等. 多单体雷暴的形变与列车效应传播机制[J]. 大气科学,2013,37(1):137-148.
[28]侯淑梅,俞小鼎,张少林,等. 第31届中国气象学会年会:S2灾害天气监测、分析与预报[C]. 中国气象学会,2014.
[29]高留喜,李静,刘畅,等. 山东省短时极端强降水标准研究[J]. 气象科技,2014,42(3):482-487.
文章导航

/