论文

利用卫星分析对流云成冰能力与繁生机制及气溶胶影响

  • 朱延年 ,
  • 余兴 ,
  • 徐小红 ,
  • 刘贵华 ,
  • 戴进
展开
  • 陕西省气象科学研究所, 西安 710014

收稿日期: 2014-01-14

  网络出版日期: 2015-12-28

基金资助

公益性行业(气象)科研专项(GYHY201306005);国家自然科学基金项目(41575136)

Glaciation and Ice Multiplication of Convective Clouds and Their Dependence on Aerosol Investigated by Satellites

  • ZHU Yannian ,
  • YU Xing ,
  • XU Xiaohong ,
  • LIU Guihua ,
  • DAI Jin
Expand
  • Meteorological Institute of Shaanxi Province, Xi'an 710014, China

Received date: 2014-01-14

  Online published: 2015-12-28

摘要

为了进一步了解复杂的对流云冰相过程和气溶胶的成冰作用, 利用多源卫星反演得到深厚对流云晶化温度(Tg)和-5 ℃有效半径(re-5), 结合气溶胶分类和光学厚度, 通过中国及周边141个个例统计分析结果表明: (1)污染气溶胶与沙尘具有相当成冰能力, 当re-5<12 μm时, 随气溶胶光学厚度的增加Tg变暖, 成冰能力增强; (2)当re-5≥12 μm时, 气溶胶使滴径减小, 减弱冰晶繁生作用, 从而降低云成冰能力; (3)对洁净海洋对流云而言, 冰晶繁生机制为主要成冰机制, 而大陆性对流云繁生作用仅占20%。

本文引用格式

朱延年 , 余兴 , 徐小红 , 刘贵华 , 戴进 . 利用卫星分析对流云成冰能力与繁生机制及气溶胶影响[J]. 高原气象, 2015 , 34(6) : 1758 -1764 . DOI: 10.7522/j.issn.1000-0534.2014.00083

Abstract

The ice phase of convective clouds is complicated and affects the precipitation and cloud radiative properties. The ice forming nuclei (IFN) activity of aerosols glaciate the clouds are still unclear. The CALIOP and MODIS satellite data during 2008 to 2011, were used to investigate the cloud Tg and re distribution over the China and surrounding areas. The results shows as follows: (1) Satellite observations show that desert dust and heavy air pollution over study area have similar ability to glaciate convective clouds, when re-5<12 μm Tg increase with increasing AOT. (2) When re-5≥12 μm, aerosol suppress ice multiplication and decrease Tg. (3) Ice multiplication is the main mechanism for pristine maritime deep convective clouds, while it works only 20 percent for continental convective clouds.

参考文献

[1]Iacobelis S F, McFarquhar G M, Mitchell D, et al. The sensitivity of radiative fluxes to parameterised cloud microphysics[J]. J Climate, 2003, 16(18): 2979-2996.
[2]Ramanathan V, Crutzen R J, Kiehl J T, et al. Atmosphere-aerosols, climate, and the hydrological cycle[J]. Science, 2001, 294(5549): 2119-2124.
[3]Chen Y, Kreidenweis S, McInnes L, et al. Single particle analyses of ice nucleating aerosols in the upper troposphere and lower stratosphere[J]. Geophys Res Lett, 1998, 25(9): 1391-1394.
[4]Rosenfeld D, Rudich Y, Lahav R. Desert dust suppressing precipitation: A possible desertification feedback loop[J]. Proc Natl Acad Sci, USA, 2001, 98: 5975-5980.
[5]Sassen K. Indirect climate forcing over the western US from Asian dust storms[J]. Geophys Res Lett, 2002, 29(10): 103-1-103-4.
[6]Zuberi B, Bertram A K, Cassa C A, et al. Heterogeneous nucleation of ice in (NH4)2SO4 -H2O particles with mineral dust immersions[J]. Geophys Res Lett, 2002, 29(10): 142-1-142-4.
[7]Schaefer V J. The formation of ice crystals in the laboratory and the atmosphere[J]. Chem Rev, 1949, 44: 291-320.
[8]Schaefer V J. The concentrations of ice nuclei in air passing the summit of Mt. Washington[J]. Bull Amer Meteor Soc, 1954, 35: 310-314.
[9]Gagin A. Ice nuclei, their physical characteristics and possible effect on the precipitation initiation[C]. Proc Int Conf on Cloud Physics, Tokyo and Sapporo, Japan, 1965: 155-162.
[10]Levi Y, Rosenfeld D. Ice nuclei, rainwater chemical composition, and static seeding effects in Israel[J]. J Appl Meteor, 1996, 35: 1494-1501.
[11]Sassen K, Demott P J, Prospero J M, et al. Saharan Dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE Results[J]. Geophys Res Lett, 2003, 30: 1633-1636.
[12]Ansmann A, Mattis I, Müller D, et al. Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar[J]. J Geophys Res, 2005, 110, D18S12, doi: 10.1029/2004jd005000.
[13]Koenig L R. The glaciating behavior of small cumulonimbus clouds[J]. J Atmos Sci, 1963, 20: 29-47.
[14]Braham R R Jr. What is the role of ice in summer rain showers[J]. J Atmos Sci, 1964, 21: 640-645.
[15]Mossop S C. Production of secondary ice particles during the growth of graupel by riming[J]. Quart J Roy Meteor Soc, 1976, 102: 45-57.
[16]Brownscombe J L, Hallett J. Experimental and field studies of precipitation of particles formed by the freezing of supercooled water Quari[J]. Quart J Roy Meteor Soc, 1967, 93: 455-473.
[17]Dye J E, Hobbs P V. The influence of environmental parameters on the freezing and fragmentation of suspended water drops[J]. J Atmos Sci, 1968, 25: 82-96.
[18]Hallett J, Mossop S C. Production of secondary ice particles during the riming process[J]. Nature, 1974, 249: 26-28.
[19]Harris-Hobbs R L, Cooper W A. Field evidence supporting quantitative predictions of secondary ice production-rates[J]. J Atmos Sci, 1987, 44: 1071-1082.
[20]Blyth A M, Latham J. A multi-thermal model of cumulus glaciation via the Hallett-Mossop process[J]. Quart J Roy Meteor Soc, 1997, 123: 1185-1198.
[21]Hogan R J, Field P R, Illingworth A J, et al. Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar[J]. Quart J Roy Meteor Soc, 2002, 128: 451-476.
[22]Clark P D, Choularton T W, Brown P R A, et al. Numerical modelling of mixed-phase frontal clouds observed during the CWVC project[J]. Quart J Roy Meteor Soc, 2005, 131: 1677-1693.
[23]Huang Y H, Blyth A M, Brown P R A, et al. The development of ice in a cumulus cloud over Southwest England[J]. New Journal of Physics, 2008, 10(10): 4306-4309.
[24]Crosier J, Bower K N, Choularton T W, et al. Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus[J]. Atmos Chem Phys, 2011, 11: 257-273.
[25]Choi Y S, Lindzen R S, Ho C H, et al. Space observations of cold-cloud phase change[J]. Proc Natl Acad Sci, USA, 2010, 107: 11211-11216.
[26]Rosenfeld D, Lensky I M. Satellite-based insights into precipitation formation processes in continental and maritime convective clouds[J]. Bull Amer Meteor Soc, 1998, 79: 2457-2476.
[27]Rosenfeld D, Woodley W L. Deep convective clouds with sustained supercooled liquid water down to -37.5 ℃[J]. Nature, 2000, 405(6785): 440-442.
[28]Yuan T, Martins J V, Li Z. Estimating glaciation temperature of deep convective clouds with remote sensing data[J]. Geophys Res Lett, 2010, 37, L08808, doi: 10.1029/2010GL042753.
[29]Rosenfeld D, Yu Xing, Liu Guihua, et al. Glaciation temperatures of convective clouds ingesting desert dust, air pollution and smoke from forest fire[J]. Geophys Res Lett, 2011, 38(21): 759-775.
[30]戴进, 余兴, 刘贵华, 等. 青藏高原雷暴弱降水云微物理特征的卫星反演分析[J]. 高原气象, 2011, 30(2): 288-298.
[31]徐小红, 余兴, 朱延年, 等. 一次强飑线云结构特征的卫星反演分析[J]. 高原气象, 2012, 31(1): 258-268.
[32]Yuan T L, Li Z Q. General macro- and micro-physical properties of deep convective clouds as observed by MODIS[J]. J Climate, 2010, 23(13): 3457-3473.
[33]Omar A H, Winker D M, Kittaka C K, et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J]. J Atmos Oceanic Technol, 2009, 26: 1994-2014.
[34]Andreae M O. Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions[J]. Atmos Chem Phys, 2009, 9: 543-556.
[35]Hudson J G, Noble S, Jha V, et al. Correlations of small cumuli droplet and drizzle drop concentrations with cloud condensation nuclei concentrations[J]. J Geophys Res, 2009, 114(D5): 730-734.
文章导航

/